47 lines
1.4 KiB
Markdown
47 lines
1.4 KiB
Markdown
# Body Measurement Using Computer Vision
|
|
|
|
This project utilizes computer vision techniques to estimate body measurements from front and side images of a person. It uses OpenCV and Mediapipe for landmark detection.
|
|
|
|
## Setup
|
|
|
|
### Requirements
|
|
|
|
- Docker
|
|
- Mediapipe
|
|
|
|
### Install Docker
|
|
|
|
Follow the instructions on the [official Docker website](https://docs.docker.com/get-docker/) to install Docker on your system.
|
|
|
|
## How to Run the Code
|
|
|
|
### Using Docker
|
|
|
|
1. **Build the Docker image:**
|
|
|
|
```sh
|
|
docker build -t <docker_image> .
|
|
```
|
|
|
|
2. **Run the Docker container:**
|
|
|
|
```sh
|
|
docker run -it <docker_image> --front <path/to/front_image.jpg> --side <path/to/side_image.jpg> --person_height <height_in_cm> --yaml_file <pth/to/config.yml> ```
|
|
|
|
### Command Line Arguments
|
|
|
|
- `--front`: Path to the front image.
|
|
- `--side`: Path to the side image.
|
|
- `--pose_detection_confidence`: (Optional) Confidence score for pose detection (default: 0.5).
|
|
- `--pose_tracking_confidence`: (Optional) Confidence score for pose tracking (default: 0.5).
|
|
- `--person_height`: Height of the person in centimeters.
|
|
- `--pixel_height`: (Optional) Pixel height of the person.
|
|
- `--measurement`: (Optional) Type of measurement.
|
|
- `--yaml_file`: Path to the YAML file containing landmarks.
|
|
|
|
### Example Command
|
|
|
|
```sh
|
|
docker run -it landmarks --front ./assets/aparna_front.jpg --side ./assets/aparna_side.jpg --person_height 157 --yaml_file config.yml
|
|
```
|