Body Measurement Using Computer Vision
This project utilizes computer vision techniques to estimate body measurements from front and side images of a person. It uses OpenCV and Mediapipe for landmark detection.
Setup
Requirements
- Docker
- Mediapipe
Install Docker
Follow the instructions on the official Docker website to install Docker on your system.
How to Run the Code
Using Docker
-
Build the Docker image:
docker build -t <docker_image> .
-
Run the Docker container:
docker run -it <docker_image> --front <path/to/front_image.jpg> --side <path/to/side_image.jpg> --person_height <height_in_cm> --yaml_file <pth/to/config.yml> ```
Command Line Arguments
--front
: Path to the front image.--side
: Path to the side image.--pose_detection_confidence
: (Optional) Confidence score for pose detection (default: 0.5).--pose_tracking_confidence
: (Optional) Confidence score for pose tracking (default: 0.5).--person_height
: Height of the person in centimeters.--pixel_height
: (Optional) Pixel height of the person.--measurement
: (Optional) Type of measurement.--yaml_file
: Path to the YAML file containing landmarks.
Example Command
docker run -it landmarks --front ./assets/aparna_front.jpg --side ./assets/aparna_side.jpg --person_height 157 --yaml_file config.yml
Description
Languages
Python
56.8%
JavaScript
41.7%
Dockerfile
1%
Shell
0.5%