# Body Measurement Using Computer Vision This project utilizes computer vision techniques to estimate body measurements from front and side images of a person. It uses OpenCV and Mediapipe for landmark detection. ## Setup ### Requirements - Docker - Mediapipe ### Install Docker Follow the instructions on the [official Docker website](https://docs.docker.com/get-docker/) to install Docker on your system. ## How to Run the Code ### Using Docker 1. **Build the Docker image:** ```sh docker build -t . ``` 2. **Run the Docker container:** ```sh docker run -it --front --side --person_height --yaml_file ``` ### Command Line Arguments - `--front`: Path to the front image. - `--side`: Path to the side image. - `--pose_detection_confidence`: (Optional) Confidence score for pose detection (default: 0.5). - `--pose_tracking_confidence`: (Optional) Confidence score for pose tracking (default: 0.5). - `--person_height`: Height of the person in centimeters. - `--pixel_height`: (Optional) Pixel height of the person. - `--measurement`: (Optional) Type of measurement. - `--yaml_file`: Path to the YAML file containing landmarks. ### Example Command ```sh docker run -it landmarks --front ./assets/aparna_front.jpg --side ./assets/aparna_side.jpg --person_height 157 --yaml_file config.yml ```