Compare commits

...

9 Commits

Author SHA1 Message Date
2fc37ad2dd Merge remote-tracking branch 'origin/dev' 2024-08-09 15:34:07 +05:30
1b0fb383c6 commit 2024-08-09 15:32:34 +05:30
5856721002 changed a funtion 2024-07-16 16:00:50 +05:30
4cdc6e0380 changed config file 2024-07-16 15:24:24 +05:30
32056be80a update readme file 2024-07-08 12:40:52 +05:30
e17e13efc8 update readme file 2024-07-08 12:36:47 +05:30
ced5396be4 chore: create docker file 2024-07-05 16:20:13 +05:30
b207f961ec chore: added requiremnts text file 2024-07-05 16:19:28 +05:30
5052782d94 make binary file 2024-07-05 12:46:08 +05:30
4 changed files with 296 additions and 0 deletions

BIN
landmarks.bin Executable file

Binary file not shown.

289
landmarks.js Normal file
View File

@ -0,0 +1,289 @@
const fs = require("fs");
const path = require("path");
const { ArgumentParser } = require("argparse");
const cv = require("@techstark/opencv-js");
const yaml = require("js-yaml");
const { Pose, POSE_LANDMARKS } = require("@mediapipe/pose");
const logging = console;
const warnings = console;
class Landmarker {
static resizedHeight = 256;
static resizedWidth = 256;
constructor() {
this.args = this.parseArgs();
this.measurements = this.loadLandmarks();
if (!this.args.frontImage) {
throw new Error("Front image needs to be passed");
}
if (!this.args.sideImage) {
throw new Error("Side image needs to be passed");
}
this.frontImage = cv.imread(this.args.frontImage);
this.sideImage = cv.imread(this.args.sideImage);
this.frontImageResized = cv.resize(
this.frontImage,
new cv.Size(Landmarker.resizedWidth, Landmarker.resizedHeight),
);
this.sideImageResized = cv.resize(
this.sideImage,
new cv.Size(Landmarker.resizedWidth, Landmarker.resizedHeight),
);
this.distances = {};
this.personHeight = this.args.personHeight;
this.pixelHeight = this.args.pixelHeight;
this.pose = new Pose({
locateFile: (file) => {
return `https://cdn.jsdelivr.net/npm/@mediapipe/pose/${file}`;
},
});
this.landmarksIndices = [
POSE_LANDMARKS.LEFT_SHOULDER,
POSE_LANDMARKS.RIGHT_SHOULDER,
POSE_LANDMARKS.LEFT_ELBOW,
POSE_LANDMARKS.RIGHT_ELBOW,
POSE_LANDMARKS.LEFT_WRIST,
POSE_LANDMARKS.RIGHT_WRIST,
POSE_LANDMARKS.LEFT_HIP,
POSE_LANDMARKS.RIGHT_HIP,
POSE_LANDMARKS.LEFT_KNEE,
POSE_LANDMARKS.RIGHT_KNEE,
POSE_LANDMARKS.LEFT_ANKLE,
POSE_LANDMARKS.RIGHT_ANKLE,
];
}
loadLandmarks() {
const file = fs.readFileSync(this.args.yamlFile, "utf8");
const landmarksData = yaml.load(file);
const measurements = {};
for (const measurement of landmarksData.measurements) {
measurements[measurement.name] = measurement.landmarks;
}
return measurements;
}
parseArgs() {
const parser = new ArgumentParser({
description: "Process images and calculate measurements",
});
parser.add_argument("--front", {
dest: "frontImage",
required: true,
help: "Path to the front image",
});
parser.add_argument("--side", {
dest: "sideImage",
required: true,
help: "Path to the side image",
});
parser.add_argument("--poseDetectionConfidence", {
dest: "poseDetectionConfidence",
default: 0.5,
type: "float",
help: "Confidence score for pose detection",
});
parser.add_argument("--poseTrackingConfidence", {
dest: "poseTrackingConfidence",
default: 0.5,
type: "float",
help: "Confidence score for pose tracking",
});
parser.add_argument("--personHeight", {
dest: "personHeight",
required: true,
type: "int",
help: "Person height in cm",
});
parser.add_argument("--pixelHeight", {
dest: "pixelHeight",
type: "int",
help: "Pixel height of person",
});
parser.add_argument("--measurement", {
dest: "measurement",
nargs: "+",
type: "str",
help: "Type of measurement",
});
parser.add_argument("--yamlFile", {
dest: "yamlFile",
required: true,
help: "Path to the YAML file containing landmarks",
});
return parser.parse_args();
}
async run() {
await this.pose.initialize();
const { frontResults, sideResults } = await this.processImages();
this.getCenterTopPoint(sideResults);
const table = [];
if (this.args.measurement) {
for (const m of this.args.measurement) {
if (!this.measurements[m]) {
throw new Error("Incorrect input (input not present in config.yml)");
} else {
const distance = this.calculateDistanceBetweenLandmarks(
frontResults,
m,
);
table.push([m, distance]);
}
}
} else {
for (const m in this.measurements) {
const distance = this.calculateDistanceBetweenLandmarks(
frontResults,
m,
);
table.push([m, distance]);
}
}
console.table(table);
this.pose.close();
}
async processImages() {
const frontResults = await this.pose.estimatePoses(this.frontImageResized);
const sideResults = await this.pose.estimatePoses(this.sideImageResized);
this.sideImageKeypoints = this.sideImageResized.clone();
this.frontImageKeypoints = this.frontImageResized.clone();
if (frontResults[0].landmarks) {
this.drawLandmarks(
this.frontImageKeypoints,
frontResults[0].landmarks,
this.landmarksIndices,
);
}
if (sideResults[0].landmarks) {
this.drawLandmarks(
this.sideImageKeypoints,
sideResults[0].landmarks,
this.landmarksIndices,
);
}
return {
frontResults: frontResults[0],
sideResults: sideResults[0],
};
}
pixelToMetricRatio() {
const pixelToMetricRatio = this.personHeight / this.pixelHeight;
logging.debug("pixelToMetricRatio %s", pixelToMetricRatio);
return pixelToMetricRatio;
}
drawLandmarks(image, landmarks, indices) {
for (const idx of indices) {
const landmark = landmarks[idx];
const h = image.rows;
const w = image.cols;
const cx = Math.round(landmark.x * w);
const cy = Math.round(landmark.y * h);
this.circle(image, cx, cy);
}
}
circle(image, cx, cy) {
cv.circle(image, new cv.Point(cx, cy), 2, new cv.Scalar(255, 0, 0), -1);
}
calculateDistanceBetweenLandmarks(frontResults, measurementName) {
if (!frontResults.landmarks) {
return;
}
const landmarks = frontResults.landmarks;
const landmarkNames = this.measurements[measurementName];
let totalDistance = 0;
for (let i = 0; i < landmarkNames.length - 1; i++) {
const current = landmarks[landmarkNames[i]];
const next = landmarks[landmarkNames[i + 1]];
const pixelDistance = this.euclideanDistance(
current.x * Landmarker.resizedWidth,
current.y * Landmarker.resizedHeight,
next.x * Landmarker.resizedWidth,
next.y * Landmarker.resizedHeight,
);
const realDistance = pixelDistance * this.pixelToMetricRatio();
totalDistance += realDistance;
}
return totalDistance;
}
euclideanDistance(x1, y1, x2, y2) {
return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
}
getCenterTopPoint(sideResults) {
const grayImage = cv.cvtColor(this.sideImageKeypoints, cv.COLOR_BGR2GRAY);
const blurredImage = cv.GaussianBlur(grayImage, new cv.Size(5, 5), 0);
const roi = blurredImage.roi(
new cv.Rect(
0,
0,
this.sideImageResized.cols,
Math.floor(this.sideImageResized.rows / 2),
),
);
this.edges = cv.Canny(roi, 50, 150);
const contours = this.edges.findContours(
cv.RETR_EXTERNAL,
cv.CHAIN_APPROX_SIMPLE,
);
let xt, yt;
this.topmostPoint = null;
for (const contour of contours) {
const [xt, yt] = contour.minEnclosingCircle();
if (this.topmostPoint === null || yt < this.topmostPoint[1]) {
this.topmostPoint = [xt, yt];
}
}
const { x, y } = sideResults.landmarks[POSE_LANDMARKS.NOSE];
const centerPoint = [
x * Landmarker.resizedWidth,
y * Landmarker.resizedHeight,
];
this.pixelHeight = Math.abs(centerPoint[1] - this.topmostPoint[1]);
cv.circle(
this.sideImageKeypoints,
new cv.Point(centerPoint[0], centerPoint[1]),
2,
new cv.Scalar(255, 0, 0),
-1,
);
cv.circle(
this.sideImageKeypoints,
new cv.Point(this.topmostPoint[0], this.topmostPoint[1]),
2,
new cv.Scalar(255, 0, 0),
-1,
);
}
}
const landmarker = new Landmarker();
landmarker.run().catch((error) => {
console.error(error);
});

3
pyproject.toml Normal file
View File

@ -0,0 +1,3 @@
[tool.black]
line-length = 120

4
requirements.txt Normal file
View File

@ -0,0 +1,4 @@
mediapipe==0.10.13
tabulate==0.9.0
opencv-python-headless==4.10.0.84
pyyaml==6.0.1