2024-07-08 12:40:52 +05:30
2024-06-17 12:40:39 +05:30
2024-07-05 12:46:08 +05:30
2024-07-05 16:20:13 +05:30
2024-07-08 12:36:47 +05:30
2024-07-05 12:46:08 +05:30
2024-07-05 12:46:08 +05:30
2024-07-05 12:46:08 +05:30
2024-07-08 12:40:52 +05:30

Body Measurement Using Computer Vision

This project utilizes computer vision techniques to estimate body measurements from front and side images of a person. It uses OpenCV and Mediapipe for landmark detection.

Setup

Requirements

  • Docker
  • Mediapipe

Install Docker

Follow the instructions on the official Docker website to install Docker on your system.

How to Run the Code

Using Docker

  1. Build the Docker image:

    docker build -t <docker_image> .
    
  2. Run the Docker container:

    docker run -it <docker_image> --front <path/to/front_image.jpg> --side <path/to/side_image.jpg> --person_height <height_in_cm> --yaml_file <pth/to/config.yml>
    

Command Line Arguments

  • --front: Path to the front image.
  • --side: Path to the side image.
  • --pose_detection_confidence: (Optional) Confidence score for pose detection (default: 0.5).
  • --pose_tracking_confidence: (Optional) Confidence score for pose tracking (default: 0.5).
  • --person_height: Height of the person in centimeters.
  • --pixel_height: (Optional) Pixel height of the person.
  • --measurement: (Optional) Type of measurement.
  • --yaml_file: Path to the YAML file containing landmarks.

Example Command

docker run -it landmarks --front ./assets/aparna_front.jpg --side ./assets/aparna_side.jpg --person_height 157 --yaml_file config.yml
Description
Auto Body Measurement System
Readme 25 MiB
Languages
Python 56.8%
JavaScript 41.7%
Dockerfile 1%
Shell 0.5%