update readme file

This commit is contained in:
aparnah 2024-07-08 12:36:47 +05:30
parent ced5396be4
commit e17e13efc8
2 changed files with 56 additions and 0 deletions

10
Dockerfile Normal file
View File

@ -0,0 +1,10 @@
FROM python:3.10-slim
WORKDIR /app
COPY . /app
RUN pip install --no-cache-dir -r requirements.txt
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
ENTRYPOINT ["./entrypoint.sh"]

46
README.md Normal file
View File

@ -0,0 +1,46 @@
# Body Measurement Using Computer Vision
This project utilizes computer vision techniques to estimate body measurements from front and side images of a person. It uses OpenCV and Mediapipe for landmark detection.
## Setup
### Requirements
- Docker
- Mediapipe
### Install Docker
Follow the instructions on the [official Docker website](https://docs.docker.com/get-docker/) to install Docker on your system.
## How to Run the Code
### Using Docker
1. **Build the Docker image:**
```sh
docker build -t <docker_image> .
```
2. **Run the Docker container:**
```sh
docker run -it <docker_image> --front <path/to/front_image.jpg> --side <path/to/side_image.jpg> --person_height <height_in_cm> --yaml_file <pth/to/config.yml> ```
### Command Line Arguments
- `--front`: Path to the front image.
- `--side`: Path to the side image.
- `--pose_detection_confidence`: (Optional) Confidence score for pose detection (default: 0.5).
- `--pose_tracking_confidence`: (Optional) Confidence score for pose tracking (default: 0.5).
- `--person_height`: Height of the person in centimeters.
- `--pixel_height`: (Optional) Pixel height of the person.
- `--measurement`: (Optional) Type of measurement.
- `--yaml_file`: Path to the YAML file containing landmarks.
### Example Command
```sh
docker run -it landmarks --front ./assets/aparna_front.jpg --side ./assets/aparna_side.jpg --person_height 157 --yaml_file config.yml
```