chore: remove all the unnecessary stuff
This commit is contained in:
parent
0729d20a6b
commit
72a713cbc3
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
__pycache__
|
||||||
|
|
||||||
|
assets/
|
273
backup.py
273
backup.py
@ -1,273 +0,0 @@
|
|||||||
import warnings
|
|
||||||
import os
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore",
|
|
||||||
category=UserWarning,
|
|
||||||
module="google.protobuf")
|
|
||||||
|
|
||||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import math
|
|
||||||
import cv2
|
|
||||||
from mediapipe.python.solutions import pose
|
|
||||||
import logging
|
|
||||||
|
|
||||||
|
|
||||||
class Landmarker:
|
|
||||||
|
|
||||||
resized_height = 256
|
|
||||||
resized_width = 300
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
args = self.parse_args()
|
|
||||||
if args.front_image == None:
|
|
||||||
raise Exception("front image needs to be passed")
|
|
||||||
if args.side_image == None:
|
|
||||||
raise Exception("side image needs to be passed")
|
|
||||||
|
|
||||||
self.front_image = cv2.imread(args.front_image)
|
|
||||||
self.side_image = cv2.imread(args.side_image)
|
|
||||||
|
|
||||||
self.front_image_resized = cv2.resize(
|
|
||||||
self.front_image, (self.resized_height, self.resized_width))
|
|
||||||
self.side_image_resized = cv2.resize(
|
|
||||||
self.side_image, (self.resized_height, self.resized_width))
|
|
||||||
|
|
||||||
self.person_height = args.person_height
|
|
||||||
self.pixel_height = args.pixel_height
|
|
||||||
|
|
||||||
self.pose = pose.Pose(
|
|
||||||
static_image_mode=True,
|
|
||||||
min_detection_confidence=args.pose_detection_confidence,
|
|
||||||
min_tracking_confidence=args.pose_tracking_confidence,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.landmarks_indices = [
|
|
||||||
pose.PoseLandmark.LEFT_SHOULDER.value,
|
|
||||||
pose.PoseLandmark.RIGHT_SHOULDER.value,
|
|
||||||
pose.PoseLandmark.LEFT_ELBOW.value,
|
|
||||||
pose.PoseLandmark.RIGHT_ELBOW.value,
|
|
||||||
pose.PoseLandmark.LEFT_WRIST.value,
|
|
||||||
pose.PoseLandmark.RIGHT_WRIST.value,
|
|
||||||
pose.PoseLandmark.LEFT_HIP.value,
|
|
||||||
pose.PoseLandmark.RIGHT_HIP.value,
|
|
||||||
pose.PoseLandmark.LEFT_KNEE.value,
|
|
||||||
pose.PoseLandmark.RIGHT_KNEE.value,
|
|
||||||
pose.PoseLandmark.LEFT_ANKLE.value,
|
|
||||||
pose.PoseLandmark.RIGHT_ANKLE.value,
|
|
||||||
]
|
|
||||||
|
|
||||||
def parse_args(self):
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--front",
|
|
||||||
dest="front_image",
|
|
||||||
type=str,
|
|
||||||
help="Front image")
|
|
||||||
parser.add_argument("--side",
|
|
||||||
dest="side_image",
|
|
||||||
type=str,
|
|
||||||
help="Side image")
|
|
||||||
parser.add_argument(
|
|
||||||
"--pose_detection_confidence",
|
|
||||||
dest="pose_detection_confidence",
|
|
||||||
default=0.5,
|
|
||||||
type=float,
|
|
||||||
help="Confidence score for pose detection",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--pose_tracking_confidence",
|
|
||||||
dest="pose_tracking_confidence",
|
|
||||||
default=0.5,
|
|
||||||
type=float,
|
|
||||||
help="Confidence score for pose tracking",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--person_height",
|
|
||||||
default=153,
|
|
||||||
dest="person_height",
|
|
||||||
type=int,
|
|
||||||
help="person height of person",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--pixel_height",
|
|
||||||
default=255,
|
|
||||||
dest="pixel_height",
|
|
||||||
type=int,
|
|
||||||
help="pixel height of person",
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
|
|
||||||
logging.warning("person's height: ", self.person_height)
|
|
||||||
|
|
||||||
logging.warning("person's pixel height: ", self.pixel_height)
|
|
||||||
|
|
||||||
front_results = self.process_images()
|
|
||||||
|
|
||||||
self.get_center_top_point(front_results)
|
|
||||||
|
|
||||||
self.calculate_distance_betn_landmarks(front_results)
|
|
||||||
|
|
||||||
self.print_distance()
|
|
||||||
|
|
||||||
self.display_images()
|
|
||||||
|
|
||||||
self.pose.close()
|
|
||||||
|
|
||||||
def process_images(self):
|
|
||||||
front_results = self.pose.process(
|
|
||||||
cv2.cvtColor(self.front_image_resized, cv2.COLOR_BGR2RGB))
|
|
||||||
side_results = self.pose.process(
|
|
||||||
cv2.cvtColor(self.side_image_resized, cv2.COLOR_BGR2RGB))
|
|
||||||
|
|
||||||
self.side_image_keypoints = self.side_image_resized.copy()
|
|
||||||
self.front_image_keypoints = self.front_image_resized.copy()
|
|
||||||
|
|
||||||
if front_results.pose_landmarks: # type: ignore
|
|
||||||
self.draw_landmarks(
|
|
||||||
self.front_image_keypoints,
|
|
||||||
front_results.pose_landmarks, # type: ignore
|
|
||||||
self.landmarks_indices,
|
|
||||||
)
|
|
||||||
if side_results.pose_landmarks: # type: ignore
|
|
||||||
self.draw_landmarks(
|
|
||||||
self.side_image_keypoints,
|
|
||||||
side_results.pose_landmarks, # type: ignore# type: ignore
|
|
||||||
self.landmarks_indices,
|
|
||||||
)
|
|
||||||
return front_results
|
|
||||||
|
|
||||||
def calculate_distance(self, landmark1, landmark2):
|
|
||||||
l1 = landmark1.x, landmark1.y
|
|
||||||
l1 = int(l1[0] * self.resized_height), int(l1[1] * self.resized_width)
|
|
||||||
x1, y1 = l1
|
|
||||||
l2 = landmark2.x, landmark2.y
|
|
||||||
l2 = int(l2[0] * self.resized_height), int(l2[1] * self.resized_width)
|
|
||||||
x2, y2 = l2
|
|
||||||
pixel_distance = self.euclidean_distance(x1, x2, y1, y2)
|
|
||||||
real_distance = pixel_distance * self.pixel_to_metric_ratio()
|
|
||||||
return real_distance
|
|
||||||
|
|
||||||
def pixel_to_metric_ratio(self):
|
|
||||||
pixel_to_metric_ratio = self.person_height / self.pixel_height
|
|
||||||
logging.warning("pixel_to_metric_ratio", pixel_to_metric_ratio)
|
|
||||||
return pixel_to_metric_ratio
|
|
||||||
|
|
||||||
def draw_landmarks(self, image, landmarks, indices):
|
|
||||||
for idx in indices:
|
|
||||||
landmark = landmarks.landmark[idx]
|
|
||||||
h, w, _ = image.shape
|
|
||||||
cx, cy = int(landmark.x * w), int(landmark.y * h)
|
|
||||||
self.circle(image, cx, cy)
|
|
||||||
|
|
||||||
def circle(self, image, cx, cy):
|
|
||||||
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
|
|
||||||
|
|
||||||
def print_distance(self):
|
|
||||||
print(
|
|
||||||
"Distance between left shoulder and left elbow:",
|
|
||||||
self.distance_left_hand_up,
|
|
||||||
)
|
|
||||||
|
|
||||||
print(
|
|
||||||
"Distance between left elbow and left wrist:",
|
|
||||||
self.distance_left_hand_down,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Distance between left hip and left knee:",
|
|
||||||
self.distance_left_leg_up)
|
|
||||||
|
|
||||||
print("Distance between left knee and left ankle:",
|
|
||||||
self.distance_left_leg_down)
|
|
||||||
|
|
||||||
print("Distance between center and top point:", self.distance)
|
|
||||||
|
|
||||||
def calculate_distance_betn_landmarks(self, front_results):
|
|
||||||
if not front_results.pose_landmarks:
|
|
||||||
return
|
|
||||||
|
|
||||||
landmarks = front_results.pose_landmarks.landmark
|
|
||||||
|
|
||||||
shoulder_left = landmarks[pose.PoseLandmark.LEFT_SHOULDER.value]
|
|
||||||
elbow_left = landmarks[pose.PoseLandmark.LEFT_ELBOW.value]
|
|
||||||
wrist_left = landmarks[pose.PoseLandmark.LEFT_WRIST.value]
|
|
||||||
hip_left = landmarks[pose.PoseLandmark.LEFT_HIP.value]
|
|
||||||
knee_left = landmarks[pose.PoseLandmark.LEFT_KNEE.value]
|
|
||||||
ankle_left = landmarks[pose.PoseLandmark.LEFT_ANKLE.value]
|
|
||||||
|
|
||||||
self.distance_left_hand_up = self.calculate_distance(
|
|
||||||
shoulder_left, elbow_left)
|
|
||||||
|
|
||||||
self.distance_left_hand_down = self.calculate_distance(
|
|
||||||
elbow_left, wrist_left)
|
|
||||||
|
|
||||||
self.distance_left_leg_up = self.calculate_distance(
|
|
||||||
hip_left, knee_left)
|
|
||||||
|
|
||||||
self.distance_left_leg_down = self.calculate_distance(
|
|
||||||
knee_left, ankle_left)
|
|
||||||
|
|
||||||
def euclidean_distance(self, x1, x2, y1, y2):
|
|
||||||
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
|
||||||
return distance
|
|
||||||
|
|
||||||
def destroy(self):
|
|
||||||
cv2.destroyAllWindows()
|
|
||||||
|
|
||||||
def display_images(self):
|
|
||||||
cv2.imshow("front_image_keypoints", self.front_image_keypoints)
|
|
||||||
cv2.imshow("side_image_keypoints", self.side_image_keypoints)
|
|
||||||
cv2.imshow("edges", self.edges)
|
|
||||||
cv2.waitKey(0)
|
|
||||||
|
|
||||||
def get_center_top_point(self, front_results):
|
|
||||||
gray_image = cv2.cvtColor(self.front_image_keypoints,
|
|
||||||
cv2.COLOR_BGR2GRAY)
|
|
||||||
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
|
|
||||||
roi = blurred_image[0:int(self.front_image_resized.shape[0] / 2), :]
|
|
||||||
self.edges = cv2.Canny(roi, 50, 150)
|
|
||||||
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL,
|
|
||||||
cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
xt, yt = None, None
|
|
||||||
self.topmost_point = None
|
|
||||||
|
|
||||||
if contours:
|
|
||||||
largest_contour = max(contours, key=cv2.contourArea)
|
|
||||||
self.topmost_point = tuple(
|
|
||||||
largest_contour[largest_contour[:, :, 1].argmin()][0])
|
|
||||||
xt, yt = self.topmost_point
|
|
||||||
self.circle(self.front_image_keypoints, xt, yt)
|
|
||||||
|
|
||||||
xc, yc = None, None
|
|
||||||
landmarks = front_results.pose_landmarks.landmark
|
|
||||||
if front_results.pose_landmarks:
|
|
||||||
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
|
|
||||||
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
|
|
||||||
center_point = (
|
|
||||||
(left_hip.x + right_hip.x) / 2,
|
|
||||||
(left_hip.y + right_hip.y) / 2,
|
|
||||||
)
|
|
||||||
center_point = (
|
|
||||||
int(center_point[0] * self.front_image_resized.shape[1]),
|
|
||||||
int(center_point[1] * self.front_image_resized.shape[0]),
|
|
||||||
)
|
|
||||||
xc, yc = center_point
|
|
||||||
logging.warning("xc: ", xc)
|
|
||||||
logging.warning(f"yc: {yc}")
|
|
||||||
self.circle(self.front_image_keypoints, xc, yc)
|
|
||||||
|
|
||||||
self.distance = self.euclidean_distance(
|
|
||||||
xc, xt, yc, yt) * self.pixel_to_metric_ratio()
|
|
||||||
|
|
||||||
return self.distance
|
|
||||||
|
|
||||||
|
|
||||||
l = Landmarker()
|
|
||||||
try:
|
|
||||||
l.run()
|
|
||||||
except:
|
|
||||||
print("error")
|
|
||||||
finally:
|
|
||||||
l.destroy()
|
|
Binary file not shown.
Before Width: | Height: | Size: 469 KiB |
120
landmarks.py
120
landmarks.py
@ -2,6 +2,10 @@ import warnings
|
|||||||
import os
|
import os
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
import math
|
import math
|
||||||
|
import argparse
|
||||||
|
import cv2
|
||||||
|
from mediapipe.python.solutions import pose
|
||||||
|
import logging
|
||||||
|
|
||||||
warnings.filterwarnings("ignore",
|
warnings.filterwarnings("ignore",
|
||||||
category=UserWarning,
|
category=UserWarning,
|
||||||
@ -9,11 +13,6 @@ warnings.filterwarnings("ignore",
|
|||||||
|
|
||||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
import argparse
|
|
||||||
import cv2
|
|
||||||
from mediapipe.python.solutions import pose
|
|
||||||
import logging
|
|
||||||
|
|
||||||
|
|
||||||
class Landmarker:
|
class Landmarker:
|
||||||
|
|
||||||
@ -35,6 +34,8 @@ class Landmarker:
|
|||||||
self.side_image_resized = cv2.resize(
|
self.side_image_resized = cv2.resize(
|
||||||
self.side_image, (self.resized_height, self.resized_width))
|
self.side_image, (self.resized_height, self.resized_width))
|
||||||
|
|
||||||
|
self.distances = {}
|
||||||
|
|
||||||
self.person_height = args.person_height
|
self.person_height = args.person_height
|
||||||
self.pixel_height = args.pixel_height
|
self.pixel_height = args.pixel_height
|
||||||
|
|
||||||
@ -43,7 +44,7 @@ class Landmarker:
|
|||||||
min_detection_confidence=args.pose_detection_confidence,
|
min_detection_confidence=args.pose_detection_confidence,
|
||||||
min_tracking_confidence=args.pose_tracking_confidence,
|
min_tracking_confidence=args.pose_tracking_confidence,
|
||||||
)
|
)
|
||||||
|
self.landmarks_to_calculate = []
|
||||||
self.landmarks_indices = [
|
self.landmarks_indices = [
|
||||||
pose.PoseLandmark.LEFT_SHOULDER.value,
|
pose.PoseLandmark.LEFT_SHOULDER.value,
|
||||||
pose.PoseLandmark.RIGHT_SHOULDER.value,
|
pose.PoseLandmark.RIGHT_SHOULDER.value,
|
||||||
@ -85,7 +86,7 @@ class Landmarker:
|
|||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--person_height",
|
"--person_height",
|
||||||
default=153,
|
# default=153,
|
||||||
dest="person_height",
|
dest="person_height",
|
||||||
type=int,
|
type=int,
|
||||||
help="person height of person",
|
help="person height of person",
|
||||||
@ -157,56 +158,75 @@ class Landmarker:
|
|||||||
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
|
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
|
||||||
|
|
||||||
def output(self):
|
def output(self):
|
||||||
table = [[
|
table = []
|
||||||
"shoulder_elbow",
|
for landmark, distance in self.distances.items():
|
||||||
], [
|
table.append([landmark.replace("_", " "), distance])
|
||||||
"elbow_wrist",
|
|
||||||
], [
|
|
||||||
"hip_knee",
|
|
||||||
], [
|
|
||||||
"knee_ankel",
|
|
||||||
]]
|
|
||||||
output = tabulate(table,
|
output = tabulate(table,
|
||||||
headers=["measurement", "value"],
|
headers=["measurement", "value"],
|
||||||
tablefmt="plain")
|
tablefmt="grid")
|
||||||
print(output)
|
print(output)
|
||||||
|
|
||||||
def get_landmarks(self):
|
|
||||||
self.landmarks_to_calculate = [[
|
|
||||||
pose.PoseLandmark.LEFT_SHOULDER, pose.PoseLandmark.LEFT_ELBOW,
|
|
||||||
pose.PoseLandmark.LEFT_WRIST
|
|
||||||
],
|
|
||||||
[
|
|
||||||
pose.PoseLandmark.LEFT_HIP,
|
|
||||||
pose.PoseLandmark.LEFT_KNEE,
|
|
||||||
pose.PoseLandmark.LEFT_ANKLE
|
|
||||||
]]
|
|
||||||
#return
|
|
||||||
|
|
||||||
def calculate_distance_betn_landmarks(self, front_results, landmarks=[]):
|
def calculate_distance_betn_landmarks(self, front_results, landmarks=[]):
|
||||||
if not front_results.pose_landmarks:
|
if not front_results.pose_landmarks:
|
||||||
return
|
return
|
||||||
|
|
||||||
landmarks = front_results.pose_landmarks.landmark
|
landmarks = front_results.pose_landmarks.landmark
|
||||||
landmarks_to_calculate = [
|
leg_landmarks = [
|
||||||
pose.PoseLandmark.LEFT_SHOULDER, pose.PoseLandmark.LEFT_ELBOW,
|
pose.PoseLandmark.LEFT_HIP,
|
||||||
pose.PoseLandmark.LEFT_WRIST
|
pose.PoseLandmark.LEFT_KNEE,
|
||||||
|
pose.PoseLandmark.LEFT_ANKLE,
|
||||||
]
|
]
|
||||||
#landmarks_to_calculate = self.get_landmarks();
|
hand_landmarks = [
|
||||||
for l in landmarks_to_calculate:
|
pose.PoseLandmark.LEFT_SHOULDER,
|
||||||
#l1 = int(l1[0] * self.resized_height), int(l1[1] * self.resized_width)
|
pose.PoseLandmark.LEFT_ELBOW,
|
||||||
real_distance = 0
|
pose.PoseLandmark.LEFT_WRIST,
|
||||||
for idx, l in enumerate(landmarks_to_calculate):
|
]
|
||||||
if idx < len(landmarks_to_calculate) - 1:
|
self.landmarks_to_calculate = leg_landmarks + hand_landmarks
|
||||||
|
# self.landmarks_to_calculate = [
|
||||||
|
# pose.PoseLandmark.LEFT_SHOULDER,
|
||||||
|
# pose.PoseLandmark.LEFT_ELBOW,
|
||||||
|
# pose.PoseLandmark.LEFT_WRIST,
|
||||||
|
# ]
|
||||||
|
|
||||||
|
table = []
|
||||||
|
for idx, l in enumerate(self.landmarks_to_calculate):
|
||||||
|
if idx < len(self.landmarks_to_calculate) - 1:
|
||||||
_current = landmarks[l.value]
|
_current = landmarks[l.value]
|
||||||
_nextl = landmarks_to_calculate[idx + 1]
|
_nextl = self.landmarks_to_calculate[idx + 1]
|
||||||
_next = landmarks[_nextl.value]
|
_next = landmarks[_nextl.value]
|
||||||
pixel_distance = self.euclidean_distance(
|
pixel_distance = self.euclidean_distance(
|
||||||
_current.x, _current.y, _next.x, _next.y)
|
_current.x * self.resized_width,
|
||||||
print(pixel_distance)
|
_current.y * self.resized_height,
|
||||||
real_distance += pixel_distance * self.pixel_to_metric_ratio(
|
_next.x * self.resized_width,
|
||||||
)
|
_next.y * self.resized_height)
|
||||||
print(real_distance)
|
real_distance = pixel_distance * self.pixel_to_metric_ratio()
|
||||||
|
table.append([l.name, _nextl.name, real_distance])
|
||||||
|
|
||||||
|
output = tabulate(
|
||||||
|
table,
|
||||||
|
headers=["Landmark 1", "Landmark 2", "Distance (cm)"],
|
||||||
|
tablefmt="grid")
|
||||||
|
print(output)
|
||||||
|
|
||||||
|
|
||||||
|
# for l in self.landmarks_to_calculate:
|
||||||
|
# real_distance = 0
|
||||||
|
# for idx, l in enumerate(self.landmarks_to_calculate):
|
||||||
|
# if idx < len(self.landmarks_to_calculate) - 1:
|
||||||
|
# _current = landmarks[l.value]
|
||||||
|
# _nextl = self.landmarks_to_calculate[idx + 1]
|
||||||
|
# _next = landmarks[_nextl.value]
|
||||||
|
# pixel_distance = self.euclidean_distance(
|
||||||
|
# _current.x * self.resized_width,
|
||||||
|
# _current.y * self.resized_height,
|
||||||
|
# _next.x * self.resized_width,
|
||||||
|
# _next.y * self.resized_height,
|
||||||
|
# )
|
||||||
|
# real_distance += pixel_distance * self.pixel_to_metric_ratio(
|
||||||
|
# )
|
||||||
|
# print(real_distance)
|
||||||
|
# self.distances[l.name] = real_distance
|
||||||
|
#
|
||||||
|
|
||||||
def euclidean_distance(self, x1, y1, x2, y2):
|
def euclidean_distance(self, x1, y1, x2, y2):
|
||||||
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
||||||
@ -244,7 +264,7 @@ class Landmarker:
|
|||||||
xc, yc = None, None
|
xc, yc = None, None
|
||||||
landmarks = side_results.pose_landmarks.landmark
|
landmarks = side_results.pose_landmarks.landmark
|
||||||
|
|
||||||
if side_results.pose_landmarks: # type: ignore
|
if side_results.pose_landmarks:
|
||||||
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
|
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
|
||||||
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
|
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
|
||||||
center_point = (
|
center_point = (
|
||||||
@ -260,13 +280,15 @@ class Landmarker:
|
|||||||
logging.warning("yc: %s", yc)
|
logging.warning("yc: %s", yc)
|
||||||
self.circle(self.side_image_keypoints, xc, yc)
|
self.circle(self.side_image_keypoints, xc, yc)
|
||||||
|
|
||||||
self.pixel_distance = self.euclidean_distance(xc, xt, yc, yt)
|
self.pixel_distance = self.euclidean_distance(xc, yc, xt, yt)
|
||||||
self.distance = (self.euclidean_distance(xc, xt, yc, yt) *
|
logging.warning("top_center_pixel_distance: %s",
|
||||||
|
self.pixel_distance)
|
||||||
|
self.pixel_height = self.pixel_distance * 2
|
||||||
|
logging.warning("pxl height: %s ", self.pixel_height)
|
||||||
|
self.distance = (self.euclidean_distance(xc, yc, xt, yt) *
|
||||||
self.pixel_to_metric_ratio())
|
self.pixel_to_metric_ratio())
|
||||||
|
|
||||||
return self.distance
|
return self.distance
|
||||||
|
|
||||||
|
|
||||||
l = Landmarker()
|
l = Landmarker()
|
||||||
try:
|
try:
|
||||||
l.run()
|
l.run()
|
||||||
|
237
temp.py
237
temp.py
@ -1,237 +0,0 @@
|
|||||||
import warnings
|
|
||||||
import os
|
|
||||||
from tabulate import tabulate
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore",
|
|
||||||
category=UserWarning,
|
|
||||||
module="google.protobuf")
|
|
||||||
|
|
||||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import math
|
|
||||||
import cv2
|
|
||||||
from mediapipe.python.solutions import pose
|
|
||||||
import logging
|
|
||||||
|
|
||||||
|
|
||||||
class Landmarker:
|
|
||||||
resized_height = 256
|
|
||||||
resized_width = 300
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
args = self.parse_args()
|
|
||||||
if args.front_image is None:
|
|
||||||
raise Exception("Front image needs to be passed")
|
|
||||||
if args.side_image is None:
|
|
||||||
raise Exception("Side image needs to be passed")
|
|
||||||
|
|
||||||
self.front_image = cv2.imread(args.front_image)
|
|
||||||
self.side_image = cv2.imread(args.side_image)
|
|
||||||
|
|
||||||
self.front_image_resized = cv2.resize(
|
|
||||||
self.front_image, (self.resized_height, self.resized_width))
|
|
||||||
self.side_image_resized = cv2.resize(
|
|
||||||
self.side_image, (self.resized_height, self.resized_width))
|
|
||||||
|
|
||||||
self.person_height = args.person_height
|
|
||||||
self.pixel_height = args.pixel_height
|
|
||||||
|
|
||||||
self.pose = pose.Pose(
|
|
||||||
static_image_mode=True,
|
|
||||||
min_detection_confidence=args.pose_detection_confidence,
|
|
||||||
min_tracking_confidence=args.pose_tracking_confidence,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.landmarks_indices = [
|
|
||||||
pose.PoseLandmark.LEFT_SHOULDER.value,
|
|
||||||
pose.PoseLandmark.RIGHT_SHOULDER.value,
|
|
||||||
pose.PoseLandmark.LEFT_ELBOW.value,
|
|
||||||
pose.PoseLandmark.RIGHT_ELBOW.value,
|
|
||||||
pose.PoseLandmark.LEFT_WRIST.value,
|
|
||||||
pose.PoseLandmark.RIGHT_WRIST.value,
|
|
||||||
pose.PoseLandmark.LEFT_HIP.value,
|
|
||||||
pose.PoseLandmark.RIGHT_HIP.value,
|
|
||||||
pose.PoseLandmark.LEFT_KNEE.value,
|
|
||||||
pose.PoseLandmark.RIGHT_KNEE.value,
|
|
||||||
pose.PoseLandmark.LEFT_ANKLE.value,
|
|
||||||
pose.PoseLandmark.RIGHT_ANKLE.value,
|
|
||||||
]
|
|
||||||
|
|
||||||
def parse_args(self):
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--front",
|
|
||||||
dest="front_image",
|
|
||||||
type=str,
|
|
||||||
help="Front image")
|
|
||||||
parser.add_argument("--side",
|
|
||||||
dest="side_image",
|
|
||||||
type=str,
|
|
||||||
help="Side image")
|
|
||||||
parser.add_argument(
|
|
||||||
"--pose_detection_confidence",
|
|
||||||
dest="pose_detection_confidence",
|
|
||||||
default=0.5,
|
|
||||||
type=float,
|
|
||||||
help="Confidence score for pose detection",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--pose_tracking_confidence",
|
|
||||||
dest="pose_tracking_confidence",
|
|
||||||
default=0.5,
|
|
||||||
type=float,
|
|
||||||
help="Confidence score for pose tracking",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--person_height",
|
|
||||||
default=153,
|
|
||||||
dest="person_height",
|
|
||||||
type=int,
|
|
||||||
help="Person height",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--pixel_height",
|
|
||||||
dest="pixel_height",
|
|
||||||
type=int,
|
|
||||||
help="Pixel height of person",
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
logging.warning("Person's height: %s", self.person_height)
|
|
||||||
logging.warning("Person's pixel height: %s", self.pixel_height)
|
|
||||||
|
|
||||||
front_results, side_results = self.process_images()
|
|
||||||
|
|
||||||
self.get_center_top_point(front_results)
|
|
||||||
|
|
||||||
self.calculate_distance_for_landmarks(front_results)
|
|
||||||
|
|
||||||
self.output()
|
|
||||||
|
|
||||||
self.display_images()
|
|
||||||
|
|
||||||
self.pose.close()
|
|
||||||
|
|
||||||
def process_images(self):
|
|
||||||
front_results = self.pose.process(
|
|
||||||
cv2.cvtColor(self.front_image_resized, cv2.COLOR_BGR2RGB))
|
|
||||||
side_results = self.pose.process(
|
|
||||||
cv2.cvtColor(self.side_image_resized, cv2.COLOR_BGR2RGB))
|
|
||||||
|
|
||||||
self.side_image_keypoints = self.side_image_resized.copy()
|
|
||||||
self.front_image_keypoints = self.front_image_resized.copy()
|
|
||||||
|
|
||||||
if front_results.pose_landmarks: # type: ignore
|
|
||||||
self.draw_landmarks(
|
|
||||||
self.front_image_keypoints,
|
|
||||||
front_results.pose_landmarks, # type: ignore
|
|
||||||
self.landmarks_indices,
|
|
||||||
)
|
|
||||||
if side_results.pose_landmarks: # type: ignore
|
|
||||||
self.draw_landmarks(
|
|
||||||
self.side_image_keypoints,
|
|
||||||
side_results.pose_landmarks, # type: ignore
|
|
||||||
self.landmarks_indices,
|
|
||||||
)
|
|
||||||
return front_results, side_results
|
|
||||||
|
|
||||||
def calculate_distance_for_landmarks(self, landmarks):
|
|
||||||
real_distance = 0
|
|
||||||
if len(landmarks) > 1:
|
|
||||||
for i in range(0, len(landmarks) - 1):
|
|
||||||
_current = landmarks[self.landmarks_indices[i]]
|
|
||||||
_next = landmarks[self.landmarks_indices[i + 1]]
|
|
||||||
pixel_distance = self.euclidean_distance(
|
|
||||||
_current.x, _current.y, _next.x, _next.y)
|
|
||||||
real_distance += pixel_distance * self.pixel_to_metric_ratio()
|
|
||||||
logging.warning("Total real distance: %s", real_distance)
|
|
||||||
return real_distance
|
|
||||||
|
|
||||||
def pixel_to_metric_ratio(self):
|
|
||||||
self.pixel_height = self.pixel_distance * 2
|
|
||||||
pixel_to_metric_ratio = self.person_height / self.pixel_height
|
|
||||||
logging.warning("Pixel to metric ratio: %s", pixel_to_metric_ratio)
|
|
||||||
return pixel_to_metric_ratio
|
|
||||||
|
|
||||||
def draw_landmarks(self, image, landmarks, indices):
|
|
||||||
for idx in indices:
|
|
||||||
landmark = landmarks[idx]
|
|
||||||
h, w, _ = image.shape
|
|
||||||
cx, cy = int(landmark.x * w), int(landmark.y * h)
|
|
||||||
self.circle(image, cx, cy)
|
|
||||||
|
|
||||||
def circle(self, image, cx, cy):
|
|
||||||
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
|
|
||||||
|
|
||||||
def output(self):
|
|
||||||
table = [["shoulder", 1], ["neck", 2]]
|
|
||||||
output = tabulate(table,
|
|
||||||
headers=["Measurement", "Value"],
|
|
||||||
tablefmt="plain")
|
|
||||||
print(output)
|
|
||||||
|
|
||||||
def euclidean_distance(self, x1, y1, x2, y2):
|
|
||||||
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
|
||||||
return distance
|
|
||||||
|
|
||||||
def destroy(self):
|
|
||||||
cv2.destroyAllWindows()
|
|
||||||
|
|
||||||
def display_images(self):
|
|
||||||
cv2.imshow("front_image_keypoints", self.front_image_keypoints)
|
|
||||||
cv2.imshow("side_image_keypoints", self.side_image_keypoints)
|
|
||||||
cv2.imshow("edges", self.edges)
|
|
||||||
cv2.waitKey(0)
|
|
||||||
|
|
||||||
def get_center_top_point(self, side_results):
|
|
||||||
gray_image = cv2.cvtColor(self.side_image_keypoints,
|
|
||||||
cv2.COLOR_BGR2GRAY)
|
|
||||||
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
|
|
||||||
roi = blurred_image[0:int(self.side_image_resized.shape[0] / 2), :]
|
|
||||||
self.edges = cv2.Canny(roi, 50, 150)
|
|
||||||
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL,
|
|
||||||
cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
xt, yt = None, None
|
|
||||||
self.topmost_point = None
|
|
||||||
|
|
||||||
if contours:
|
|
||||||
largest_contour = max(contours, key=cv2.contourArea)
|
|
||||||
self.topmost_point = tuple(
|
|
||||||
largest_contour[largest_contour[:, :, 1].argmin()][0])
|
|
||||||
xt, yt = self.topmost_point
|
|
||||||
self.circle(self.side_image_keypoints, xt, yt)
|
|
||||||
|
|
||||||
logging.warning("xt: %s", xt)
|
|
||||||
logging.warning("yt: %s", yt)
|
|
||||||
xc, yc = None, None
|
|
||||||
landmarks = side_results.pose_landmarks.landmark
|
|
||||||
|
|
||||||
if side_results.pose_landmarks: # type: ignore
|
|
||||||
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
|
|
||||||
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
|
|
||||||
center_point = (
|
|
||||||
(left_hip.x + right_hip.x) / 2,
|
|
||||||
(left_hip.y + right_hip.y) / 2,
|
|
||||||
)
|
|
||||||
center_point = (
|
|
||||||
int(center_point[0] * self.side_image_resized.shape[1]),
|
|
||||||
int(center_point[1] * self.side_image_resized.shape[0]),
|
|
||||||
)
|
|
||||||
xc, yc = center_point
|
|
||||||
logging.warning("xc: %s", xc)
|
|
||||||
logging.warning("yc: %s", yc)
|
|
||||||
self.circle(self.side_image_keypoints, xc, yc)
|
|
||||||
|
|
||||||
self.pixel_distance = self.euclidean_distance(xc, xt, yc, yt)
|
|
||||||
self.distance = self.pixel_distance * self.pixel_to_metric_ratio()
|
|
||||||
return self.distance
|
|
||||||
|
|
||||||
|
|
||||||
l = Landmarker()
|
|
||||||
try:
|
|
||||||
l.run()
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error: {e}")
|
|
||||||
finally:
|
|
||||||
l.destroy()
|
|
@ -1 +0,0 @@
|
|||||||
exit status 127
|
|
38
trial.py
38
trial.py
@ -1,38 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import mediapipe as mp
|
|
||||||
|
|
||||||
|
|
||||||
def detect_points(image_path):
|
|
||||||
image = cv2.imread(image_path)
|
|
||||||
target_width = 256
|
|
||||||
target_height = int(image.shape[0] * target_width / image.shape[1])
|
|
||||||
|
|
||||||
image = cv2.resize(image, (target_width, target_height))
|
|
||||||
|
|
||||||
mp_pose = mp.solutions.pose #type: ignore
|
|
||||||
|
|
||||||
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)
|
|
||||||
|
|
||||||
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
||||||
|
|
||||||
results = pose.process(image_rgb)
|
|
||||||
|
|
||||||
if results.pose_landmarks:
|
|
||||||
for landmark in results.pose_landmarks.landmark:
|
|
||||||
cv2.circle(
|
|
||||||
image,
|
|
||||||
(int(landmark.x * image.shape[1]),
|
|
||||||
int(landmark.y * image.shape[0])),
|
|
||||||
5,
|
|
||||||
(0, 255, 0),
|
|
||||||
-1,
|
|
||||||
)
|
|
||||||
|
|
||||||
cv2.imshow("Image", image)
|
|
||||||
cv2.waitKey(0)
|
|
||||||
cv2.destroyAllWindows()
|
|
||||||
|
|
||||||
|
|
||||||
image_path = "/home/aparna/projects/aubome/assets/aparna_side.jpg"
|
|
||||||
|
|
||||||
detect_points(image_path)
|
|
Loading…
x
Reference in New Issue
Block a user