aubome/temp.py
2024-06-18 23:39:03 +05:30

238 lines
8.2 KiB
Python

import warnings
import os
from tabulate import tabulate
warnings.filterwarnings("ignore",
category=UserWarning,
module="google.protobuf")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import argparse
import math
import cv2
from mediapipe.python.solutions import pose
import logging
class Landmarker:
resized_height = 256
resized_width = 300
def __init__(self) -> None:
args = self.parse_args()
if args.front_image is None:
raise Exception("Front image needs to be passed")
if args.side_image is None:
raise Exception("Side image needs to be passed")
self.front_image = cv2.imread(args.front_image)
self.side_image = cv2.imread(args.side_image)
self.front_image_resized = cv2.resize(
self.front_image, (self.resized_height, self.resized_width))
self.side_image_resized = cv2.resize(
self.side_image, (self.resized_height, self.resized_width))
self.person_height = args.person_height
self.pixel_height = args.pixel_height
self.pose = pose.Pose(
static_image_mode=True,
min_detection_confidence=args.pose_detection_confidence,
min_tracking_confidence=args.pose_tracking_confidence,
)
self.landmarks_indices = [
pose.PoseLandmark.LEFT_SHOULDER.value,
pose.PoseLandmark.RIGHT_SHOULDER.value,
pose.PoseLandmark.LEFT_ELBOW.value,
pose.PoseLandmark.RIGHT_ELBOW.value,
pose.PoseLandmark.LEFT_WRIST.value,
pose.PoseLandmark.RIGHT_WRIST.value,
pose.PoseLandmark.LEFT_HIP.value,
pose.PoseLandmark.RIGHT_HIP.value,
pose.PoseLandmark.LEFT_KNEE.value,
pose.PoseLandmark.RIGHT_KNEE.value,
pose.PoseLandmark.LEFT_ANKLE.value,
pose.PoseLandmark.RIGHT_ANKLE.value,
]
def parse_args(self):
parser = argparse.ArgumentParser()
parser.add_argument("--front",
dest="front_image",
type=str,
help="Front image")
parser.add_argument("--side",
dest="side_image",
type=str,
help="Side image")
parser.add_argument(
"--pose_detection_confidence",
dest="pose_detection_confidence",
default=0.5,
type=float,
help="Confidence score for pose detection",
)
parser.add_argument(
"--pose_tracking_confidence",
dest="pose_tracking_confidence",
default=0.5,
type=float,
help="Confidence score for pose tracking",
)
parser.add_argument(
"--person_height",
default=153,
dest="person_height",
type=int,
help="Person height",
)
parser.add_argument(
"--pixel_height",
dest="pixel_height",
type=int,
help="Pixel height of person",
)
return parser.parse_args()
def run(self):
logging.warning("Person's height: %s", self.person_height)
logging.warning("Person's pixel height: %s", self.pixel_height)
front_results, side_results = self.process_images()
self.get_center_top_point(front_results)
self.calculate_distance_for_landmarks(front_results)
self.output()
self.display_images()
self.pose.close()
def process_images(self):
front_results = self.pose.process(
cv2.cvtColor(self.front_image_resized, cv2.COLOR_BGR2RGB))
side_results = self.pose.process(
cv2.cvtColor(self.side_image_resized, cv2.COLOR_BGR2RGB))
self.side_image_keypoints = self.side_image_resized.copy()
self.front_image_keypoints = self.front_image_resized.copy()
if front_results.pose_landmarks: # type: ignore
self.draw_landmarks(
self.front_image_keypoints,
front_results.pose_landmarks, # type: ignore
self.landmarks_indices,
)
if side_results.pose_landmarks: # type: ignore
self.draw_landmarks(
self.side_image_keypoints,
side_results.pose_landmarks, # type: ignore
self.landmarks_indices,
)
return front_results, side_results
def calculate_distance_for_landmarks(self, landmarks):
real_distance = 0
if len(landmarks) > 1:
for i in range(0, len(landmarks) - 1):
_current = landmarks[self.landmarks_indices[i]]
_next = landmarks[self.landmarks_indices[i + 1]]
pixel_distance = self.euclidean_distance(
_current.x, _current.y, _next.x, _next.y)
real_distance += pixel_distance * self.pixel_to_metric_ratio()
logging.warning("Total real distance: %s", real_distance)
return real_distance
def pixel_to_metric_ratio(self):
self.pixel_height = self.pixel_distance * 2
pixel_to_metric_ratio = self.person_height / self.pixel_height
logging.warning("Pixel to metric ratio: %s", pixel_to_metric_ratio)
return pixel_to_metric_ratio
def draw_landmarks(self, image, landmarks, indices):
for idx in indices:
landmark = landmarks[idx]
h, w, _ = image.shape
cx, cy = int(landmark.x * w), int(landmark.y * h)
self.circle(image, cx, cy)
def circle(self, image, cx, cy):
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
def output(self):
table = [["shoulder", 1], ["neck", 2]]
output = tabulate(table,
headers=["Measurement", "Value"],
tablefmt="plain")
print(output)
def euclidean_distance(self, x1, y1, x2, y2):
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
return distance
def destroy(self):
cv2.destroyAllWindows()
def display_images(self):
cv2.imshow("front_image_keypoints", self.front_image_keypoints)
cv2.imshow("side_image_keypoints", self.side_image_keypoints)
cv2.imshow("edges", self.edges)
cv2.waitKey(0)
def get_center_top_point(self, side_results):
gray_image = cv2.cvtColor(self.side_image_keypoints,
cv2.COLOR_BGR2GRAY)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
roi = blurred_image[0:int(self.side_image_resized.shape[0] / 2), :]
self.edges = cv2.Canny(roi, 50, 150)
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
xt, yt = None, None
self.topmost_point = None
if contours:
largest_contour = max(contours, key=cv2.contourArea)
self.topmost_point = tuple(
largest_contour[largest_contour[:, :, 1].argmin()][0])
xt, yt = self.topmost_point
self.circle(self.side_image_keypoints, xt, yt)
logging.warning("xt: %s", xt)
logging.warning("yt: %s", yt)
xc, yc = None, None
landmarks = side_results.pose_landmarks.landmark
if side_results.pose_landmarks: # type: ignore
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
center_point = (
(left_hip.x + right_hip.x) / 2,
(left_hip.y + right_hip.y) / 2,
)
center_point = (
int(center_point[0] * self.side_image_resized.shape[1]),
int(center_point[1] * self.side_image_resized.shape[0]),
)
xc, yc = center_point
logging.warning("xc: %s", xc)
logging.warning("yc: %s", yc)
self.circle(self.side_image_keypoints, xc, yc)
self.pixel_distance = self.euclidean_distance(xc, xt, yc, yt)
self.distance = self.pixel_distance * self.pixel_to_metric_ratio()
return self.distance
l = Landmarker()
try:
l.run()
except Exception as e:
print(f"Error: {e}")
finally:
l.destroy()