219 lines
8.2 KiB
JavaScript
219 lines
8.2 KiB
JavaScript
const fs = require('fs');
|
|
const path = require('path');
|
|
const ArgumentParser = require('argparse');
|
|
const cv = require('opencv');
|
|
const yaml = require('js-yaml');
|
|
const { Pose, POSE_LANDMARKS } = require('@mediapipe/pose');
|
|
|
|
const logging = console;
|
|
const warnings = console;
|
|
|
|
class Landmarker {
|
|
static resizedHeight = 256;
|
|
static resizedWidth = 256;
|
|
|
|
constructor() {
|
|
this.args = this.parseArgs();
|
|
this.measurements = this.loadLandmarks();
|
|
if (!this.args.frontImage) {
|
|
throw new Error("Front image needs to be passed");
|
|
}
|
|
if (!this.args.sideImage) {
|
|
throw new Error("Side image needs to be passed");
|
|
}
|
|
|
|
this.frontImage = cv.imread(this.args.frontImage);
|
|
this.sideImage = cv.imread(this.args.sideImage);
|
|
|
|
this.frontImageResized = this.frontImage.resize(Landmarker.resizedHeight, Landmarker.resizedWidth);
|
|
this.sideImageResized = this.sideImage.resize(Landmarker.resizedHeight, Landmarker.resizedWidth);
|
|
|
|
this.distances = {};
|
|
|
|
this.personHeight = this.args.personHeight;
|
|
this.pixelHeight = this.args.pixelHeight;
|
|
|
|
this.pose = new Pose({
|
|
locateFile: (file) => {
|
|
return `https://cdn.jsdelivr.net/npm/@mediapipe/pose/${file}`;
|
|
}
|
|
});
|
|
|
|
this.landmarksIndices = [
|
|
POSE_LANDMARKS.LEFT_SHOULDER,
|
|
POSE_LANDMARKS.RIGHT_SHOULDER,
|
|
POSE_LANDMARKS.LEFT_ELBOW,
|
|
POSE_LANDMARKS.RIGHT_ELBOW,
|
|
POSE_LANDMARKS.LEFT_WRIST,
|
|
POSE_LANDMARKS.RIGHT_WRIST,
|
|
POSE_LANDMARKS.LEFT_HIP,
|
|
POSE_LANDMARKS.RIGHT_HIP,
|
|
POSE_LANDMARKS.LEFT_KNEE,
|
|
POSE_LANDMARKS.RIGHT_KNEE,
|
|
POSE_LANDMARKS.LEFT_ANKLE,
|
|
POSE_LANDMARKS.RIGHT_ANKLE
|
|
];
|
|
}
|
|
|
|
loadLandmarks() {
|
|
const file = fs.readFileSync(this.args.yamlFile, 'utf8');
|
|
const landmarksData = yaml.load(file);
|
|
const measurements = {};
|
|
for (const measurement of landmarksData.measurements) {
|
|
measurements[measurement.name] = measurement.landmarks;
|
|
}
|
|
return measurements;
|
|
}
|
|
|
|
parseArgs() {
|
|
const parser = new ArgumentParser();
|
|
parser.add_argument('--front', { dest: 'frontImage', type: 'str', help: 'Front image' });
|
|
parser.add_argument('--side', { dest: 'sideImage', type: 'str', help: 'Side image' });
|
|
parser.add_argument('--poseDetectionConfidence', { dest: 'poseDetectionConfidence', default: 0.5, type: 'float', help: 'Confidence score for pose detection' });
|
|
parser.add_argument('--poseTrackingConfidence', { dest: 'poseTrackingConfidence', default: 0.5, type: 'float', help: 'Confidence score for pose tracking' });
|
|
parser.add_argument('--personHeight', { dest: 'personHeight', type: 'int', help: 'Person height in cm' });
|
|
parser.add_argument('--pixelHeight', { dest: 'pixelHeight', type: 'int', help: 'Pixel height of person' });
|
|
parser.add_argument('--measurement', { dest: 'measurement', nargs: '+', type: 'str', help: 'Type of measurement' });
|
|
parser.add_argument('--yamlFile', { dest: 'yamlFile', type: 'str', help: 'Path to the YAML file containing landmarks' });
|
|
return parser.parse_args();
|
|
}
|
|
|
|
async run() {
|
|
await this.pose.initialize();
|
|
const { frontResults, sideResults } = await this.processImages();
|
|
|
|
this.getCenterTopPoint(sideResults);
|
|
|
|
const table = [];
|
|
if (this.args.measurement) {
|
|
for (const m of this.args.measurement) {
|
|
if (!this.measurements[m]) {
|
|
throw new Error("Incorrect input (input not present in config.yml)");
|
|
} else {
|
|
const distance = this.calculateDistanceBetweenLandmarks(frontResults, m);
|
|
table.push([m, distance]);
|
|
}
|
|
}
|
|
} else {
|
|
for (const m in this.measurements) {
|
|
const distance = this.calculateDistanceBetweenLandmarks(frontResults, m);
|
|
table.push([m, distance]);
|
|
}
|
|
}
|
|
|
|
console.table(table);
|
|
|
|
this.pose.close();
|
|
}
|
|
|
|
async processImages() {
|
|
const frontResults = await this.pose.estimatePoses(this.frontImageResized);
|
|
const sideResults = await this.pose.estimatePoses(this.sideImageResized);
|
|
|
|
this.sideImageKeypoints = this.sideImageResized.copy();
|
|
this.frontImageKeypoints = this.frontImageResized.copy();
|
|
|
|
if (frontResults[0].landmarks) {
|
|
this.drawLandmarks(this.frontImageKeypoints, frontResults[0].landmarks, this.landmarksIndices);
|
|
}
|
|
if (sideResults[0].landmarks) {
|
|
this.drawLandmarks(this.sideImageKeypoints, sideResults[0].landmarks, this.landmarksIndices);
|
|
}
|
|
return {
|
|
frontResults: frontResults[0],
|
|
sideResults: sideResults[0]
|
|
};
|
|
}
|
|
|
|
pixelToMetricRatio() {
|
|
this.pixelHeight = this.pixelDistance * 2;
|
|
const pixelToMetricRatio = this.personHeight / this.pixelHeight;
|
|
logging.debug("pixelToMetricRatio %s", pixelToMetricRatio);
|
|
return pixelToMetricRatio;
|
|
}
|
|
|
|
drawLandmarks(image, landmarks, indices) {
|
|
for (const idx of indices) {
|
|
const landmark = landmarks[idx];
|
|
const h = image.rows;
|
|
const w = image.cols;
|
|
const cx = Math.round(landmark.x * w);
|
|
const cy = Math.round(landmark.y * h);
|
|
this.circle(image, cx, cy);
|
|
}
|
|
}
|
|
|
|
circle(image, cx, cy) {
|
|
return image.drawCircle(new cv.Point(cx, cy), 2, new cv.Vec(255, 0, 0), -1);
|
|
}
|
|
|
|
calculateDistanceBetweenLandmarks(frontResults, measurementName) {
|
|
if (!frontResults.landmarks) {
|
|
return;
|
|
}
|
|
|
|
const landmarks = frontResults.landmarks;
|
|
const landmarkNames = this.measurements[measurementName];
|
|
|
|
let totalDistance = 0;
|
|
for (let i = 0; i < landmarkNames.length - 1; i++) {
|
|
const current = landmarks[landmarkNames[i]];
|
|
const next = landmarks[landmarkNames[i + 1]];
|
|
const pixelDistance = this.euclideanDistance(
|
|
current.x * Landmarker.resizedWidth,
|
|
current.y * Landmarker.resizedHeight,
|
|
next.x * Landmarker.resizedWidth,
|
|
next.y * Landmarker.resizedHeight
|
|
);
|
|
const realDistance = pixelDistance * this.pixelToMetricRatio();
|
|
totalDistance += realDistance;
|
|
}
|
|
return totalDistance;
|
|
}
|
|
|
|
euclideanDistance(x1, y1, x2, y2) {
|
|
return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
|
|
}
|
|
|
|
getCenterTopPoint(sideResults) {
|
|
const grayImage = this.sideImageKeypoints.cvtColor(cv.COLOR_BGR2GRAY);
|
|
const blurredImage = grayImage.gaussianBlur(new cv.Size(5, 5), 0);
|
|
const roi = blurredImage.getRegion(new cv.Rect(0, 0, this.sideImageResized.cols, Math.floor(this.sideImageResized.rows / 2)));
|
|
this.edges = roi.canny(50, 150);
|
|
const contours = this.edges.findContours(cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE);
|
|
|
|
let xt, yt;
|
|
this.topmostPoint = null;
|
|
|
|
if (contours.length > 0) {
|
|
const largestContour = contours.sort((a, b) => b.area - a.area)[0];
|
|
this.topmostPoint = largestContour.minBy(pt => pt.y);
|
|
xt = this.topmostPoint.x;
|
|
yt = this.topmostPoint.y;
|
|
|
|
this.circle(this.sideImageKeypoints, xt, yt);
|
|
}
|
|
|
|
let xc, yc;
|
|
if (sideResults.landmarks) {
|
|
const leftHip = sideResults.landmarks[POSE_LANDMARKS.LEFT_HIP];
|
|
const rightHip = sideResults.landmarks[POSE_LANDMARKS.RIGHT_HIP];
|
|
const centerPoint = [
|
|
(leftHip.x + rightHip.x) / 2,
|
|
(leftHip.y + rightHip.y) / 2
|
|
];
|
|
xc = Math.round(centerPoint[0] * this.sideImageResized.cols);
|
|
yc = Math.round(centerPoint[1] * this.sideImageResized.rows);
|
|
this.circle(this.sideImageKeypoints, xc, yc);
|
|
}
|
|
|
|
this.pixelDistance = this.euclideanDistance(xt, yt, xc, yc);
|
|
this.pixelDistance *= 2;
|
|
}
|
|
}
|
|
|
|
(async () => {
|
|
const landmarker = new Landmarker();
|
|
await landmarker.run();
|
|
})();
|