Compare commits
No commits in common. "2fc37ad2dd7a4d059a468cc28a8d4ed7f7222e2b" and "a2108cc7c9811cf5b7eabb1de01c3efda515eff8" have entirely different histories.
2fc37ad2dd
...
a2108cc7c9
BIN
landmarks.bin
BIN
landmarks.bin
Binary file not shown.
289
landmarks.js
289
landmarks.js
@ -1,289 +0,0 @@
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
const { ArgumentParser } = require("argparse");
|
||||
const cv = require("@techstark/opencv-js");
|
||||
const yaml = require("js-yaml");
|
||||
const { Pose, POSE_LANDMARKS } = require("@mediapipe/pose");
|
||||
|
||||
const logging = console;
|
||||
const warnings = console;
|
||||
|
||||
class Landmarker {
|
||||
static resizedHeight = 256;
|
||||
static resizedWidth = 256;
|
||||
|
||||
constructor() {
|
||||
this.args = this.parseArgs();
|
||||
this.measurements = this.loadLandmarks();
|
||||
if (!this.args.frontImage) {
|
||||
throw new Error("Front image needs to be passed");
|
||||
}
|
||||
if (!this.args.sideImage) {
|
||||
throw new Error("Side image needs to be passed");
|
||||
}
|
||||
|
||||
this.frontImage = cv.imread(this.args.frontImage);
|
||||
this.sideImage = cv.imread(this.args.sideImage);
|
||||
|
||||
this.frontImageResized = cv.resize(
|
||||
this.frontImage,
|
||||
new cv.Size(Landmarker.resizedWidth, Landmarker.resizedHeight),
|
||||
);
|
||||
this.sideImageResized = cv.resize(
|
||||
this.sideImage,
|
||||
new cv.Size(Landmarker.resizedWidth, Landmarker.resizedHeight),
|
||||
);
|
||||
|
||||
this.distances = {};
|
||||
|
||||
this.personHeight = this.args.personHeight;
|
||||
this.pixelHeight = this.args.pixelHeight;
|
||||
|
||||
this.pose = new Pose({
|
||||
locateFile: (file) => {
|
||||
return `https://cdn.jsdelivr.net/npm/@mediapipe/pose/${file}`;
|
||||
},
|
||||
});
|
||||
|
||||
this.landmarksIndices = [
|
||||
POSE_LANDMARKS.LEFT_SHOULDER,
|
||||
POSE_LANDMARKS.RIGHT_SHOULDER,
|
||||
POSE_LANDMARKS.LEFT_ELBOW,
|
||||
POSE_LANDMARKS.RIGHT_ELBOW,
|
||||
POSE_LANDMARKS.LEFT_WRIST,
|
||||
POSE_LANDMARKS.RIGHT_WRIST,
|
||||
POSE_LANDMARKS.LEFT_HIP,
|
||||
POSE_LANDMARKS.RIGHT_HIP,
|
||||
POSE_LANDMARKS.LEFT_KNEE,
|
||||
POSE_LANDMARKS.RIGHT_KNEE,
|
||||
POSE_LANDMARKS.LEFT_ANKLE,
|
||||
POSE_LANDMARKS.RIGHT_ANKLE,
|
||||
];
|
||||
}
|
||||
|
||||
loadLandmarks() {
|
||||
const file = fs.readFileSync(this.args.yamlFile, "utf8");
|
||||
const landmarksData = yaml.load(file);
|
||||
const measurements = {};
|
||||
for (const measurement of landmarksData.measurements) {
|
||||
measurements[measurement.name] = measurement.landmarks;
|
||||
}
|
||||
return measurements;
|
||||
}
|
||||
|
||||
parseArgs() {
|
||||
const parser = new ArgumentParser({
|
||||
description: "Process images and calculate measurements",
|
||||
});
|
||||
parser.add_argument("--front", {
|
||||
dest: "frontImage",
|
||||
required: true,
|
||||
help: "Path to the front image",
|
||||
});
|
||||
parser.add_argument("--side", {
|
||||
dest: "sideImage",
|
||||
required: true,
|
||||
help: "Path to the side image",
|
||||
});
|
||||
parser.add_argument("--poseDetectionConfidence", {
|
||||
dest: "poseDetectionConfidence",
|
||||
default: 0.5,
|
||||
type: "float",
|
||||
help: "Confidence score for pose detection",
|
||||
});
|
||||
parser.add_argument("--poseTrackingConfidence", {
|
||||
dest: "poseTrackingConfidence",
|
||||
default: 0.5,
|
||||
type: "float",
|
||||
help: "Confidence score for pose tracking",
|
||||
});
|
||||
parser.add_argument("--personHeight", {
|
||||
dest: "personHeight",
|
||||
required: true,
|
||||
type: "int",
|
||||
help: "Person height in cm",
|
||||
});
|
||||
parser.add_argument("--pixelHeight", {
|
||||
dest: "pixelHeight",
|
||||
type: "int",
|
||||
help: "Pixel height of person",
|
||||
});
|
||||
parser.add_argument("--measurement", {
|
||||
dest: "measurement",
|
||||
nargs: "+",
|
||||
type: "str",
|
||||
help: "Type of measurement",
|
||||
});
|
||||
parser.add_argument("--yamlFile", {
|
||||
dest: "yamlFile",
|
||||
required: true,
|
||||
help: "Path to the YAML file containing landmarks",
|
||||
});
|
||||
return parser.parse_args();
|
||||
}
|
||||
|
||||
async run() {
|
||||
await this.pose.initialize();
|
||||
const { frontResults, sideResults } = await this.processImages();
|
||||
|
||||
this.getCenterTopPoint(sideResults);
|
||||
|
||||
const table = [];
|
||||
if (this.args.measurement) {
|
||||
for (const m of this.args.measurement) {
|
||||
if (!this.measurements[m]) {
|
||||
throw new Error("Incorrect input (input not present in config.yml)");
|
||||
} else {
|
||||
const distance = this.calculateDistanceBetweenLandmarks(
|
||||
frontResults,
|
||||
m,
|
||||
);
|
||||
table.push([m, distance]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (const m in this.measurements) {
|
||||
const distance = this.calculateDistanceBetweenLandmarks(
|
||||
frontResults,
|
||||
m,
|
||||
);
|
||||
table.push([m, distance]);
|
||||
}
|
||||
}
|
||||
|
||||
console.table(table);
|
||||
|
||||
this.pose.close();
|
||||
}
|
||||
|
||||
async processImages() {
|
||||
const frontResults = await this.pose.estimatePoses(this.frontImageResized);
|
||||
const sideResults = await this.pose.estimatePoses(this.sideImageResized);
|
||||
|
||||
this.sideImageKeypoints = this.sideImageResized.clone();
|
||||
this.frontImageKeypoints = this.frontImageResized.clone();
|
||||
|
||||
if (frontResults[0].landmarks) {
|
||||
this.drawLandmarks(
|
||||
this.frontImageKeypoints,
|
||||
frontResults[0].landmarks,
|
||||
this.landmarksIndices,
|
||||
);
|
||||
}
|
||||
if (sideResults[0].landmarks) {
|
||||
this.drawLandmarks(
|
||||
this.sideImageKeypoints,
|
||||
sideResults[0].landmarks,
|
||||
this.landmarksIndices,
|
||||
);
|
||||
}
|
||||
return {
|
||||
frontResults: frontResults[0],
|
||||
sideResults: sideResults[0],
|
||||
};
|
||||
}
|
||||
|
||||
pixelToMetricRatio() {
|
||||
const pixelToMetricRatio = this.personHeight / this.pixelHeight;
|
||||
logging.debug("pixelToMetricRatio %s", pixelToMetricRatio);
|
||||
return pixelToMetricRatio;
|
||||
}
|
||||
|
||||
drawLandmarks(image, landmarks, indices) {
|
||||
for (const idx of indices) {
|
||||
const landmark = landmarks[idx];
|
||||
const h = image.rows;
|
||||
const w = image.cols;
|
||||
const cx = Math.round(landmark.x * w);
|
||||
const cy = Math.round(landmark.y * h);
|
||||
this.circle(image, cx, cy);
|
||||
}
|
||||
}
|
||||
|
||||
circle(image, cx, cy) {
|
||||
cv.circle(image, new cv.Point(cx, cy), 2, new cv.Scalar(255, 0, 0), -1);
|
||||
}
|
||||
|
||||
calculateDistanceBetweenLandmarks(frontResults, measurementName) {
|
||||
if (!frontResults.landmarks) {
|
||||
return;
|
||||
}
|
||||
|
||||
const landmarks = frontResults.landmarks;
|
||||
const landmarkNames = this.measurements[measurementName];
|
||||
|
||||
let totalDistance = 0;
|
||||
for (let i = 0; i < landmarkNames.length - 1; i++) {
|
||||
const current = landmarks[landmarkNames[i]];
|
||||
const next = landmarks[landmarkNames[i + 1]];
|
||||
const pixelDistance = this.euclideanDistance(
|
||||
current.x * Landmarker.resizedWidth,
|
||||
current.y * Landmarker.resizedHeight,
|
||||
next.x * Landmarker.resizedWidth,
|
||||
next.y * Landmarker.resizedHeight,
|
||||
);
|
||||
const realDistance = pixelDistance * this.pixelToMetricRatio();
|
||||
totalDistance += realDistance;
|
||||
}
|
||||
return totalDistance;
|
||||
}
|
||||
|
||||
euclideanDistance(x1, y1, x2, y2) {
|
||||
return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
|
||||
}
|
||||
|
||||
getCenterTopPoint(sideResults) {
|
||||
const grayImage = cv.cvtColor(this.sideImageKeypoints, cv.COLOR_BGR2GRAY);
|
||||
const blurredImage = cv.GaussianBlur(grayImage, new cv.Size(5, 5), 0);
|
||||
const roi = blurredImage.roi(
|
||||
new cv.Rect(
|
||||
0,
|
||||
0,
|
||||
this.sideImageResized.cols,
|
||||
Math.floor(this.sideImageResized.rows / 2),
|
||||
),
|
||||
);
|
||||
this.edges = cv.Canny(roi, 50, 150);
|
||||
const contours = this.edges.findContours(
|
||||
cv.RETR_EXTERNAL,
|
||||
cv.CHAIN_APPROX_SIMPLE,
|
||||
);
|
||||
|
||||
let xt, yt;
|
||||
this.topmostPoint = null;
|
||||
|
||||
for (const contour of contours) {
|
||||
const [xt, yt] = contour.minEnclosingCircle();
|
||||
if (this.topmostPoint === null || yt < this.topmostPoint[1]) {
|
||||
this.topmostPoint = [xt, yt];
|
||||
}
|
||||
}
|
||||
|
||||
const { x, y } = sideResults.landmarks[POSE_LANDMARKS.NOSE];
|
||||
const centerPoint = [
|
||||
x * Landmarker.resizedWidth,
|
||||
y * Landmarker.resizedHeight,
|
||||
];
|
||||
this.pixelHeight = Math.abs(centerPoint[1] - this.topmostPoint[1]);
|
||||
|
||||
cv.circle(
|
||||
this.sideImageKeypoints,
|
||||
new cv.Point(centerPoint[0], centerPoint[1]),
|
||||
2,
|
||||
new cv.Scalar(255, 0, 0),
|
||||
-1,
|
||||
);
|
||||
cv.circle(
|
||||
this.sideImageKeypoints,
|
||||
new cv.Point(this.topmostPoint[0], this.topmostPoint[1]),
|
||||
2,
|
||||
new cv.Scalar(255, 0, 0),
|
||||
-1,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
const landmarker = new Landmarker();
|
||||
landmarker.run().catch((error) => {
|
||||
console.error(error);
|
||||
});
|
@ -1,3 +0,0 @@
|
||||
[tool.black]
|
||||
line-length = 120
|
||||
|
@ -1,4 +0,0 @@
|
||||
mediapipe==0.10.13
|
||||
tabulate==0.9.0
|
||||
opencv-python-headless==4.10.0.84
|
||||
pyyaml==6.0.1
|
Loading…
x
Reference in New Issue
Block a user