changed config file

This commit is contained in:
aparnah 2024-07-16 15:39:45 +05:30
parent 414e62d150
commit d9d0cd4517
2 changed files with 234 additions and 242 deletions

View File

@ -1,57 +1,15 @@
measurements:
- name: arm_length
landmarks:
- 11
- 13
- 15
- name: leg_length
landmarks:
- 23
- 25
- 27
- name: shoulder_length
landmarks:
- 11
- 12
- name: neck_to_hip_length
- left_shoulder
- right_shoulder
- name: arm_length
landmarks:
- 11
- 23
#0 - nose
#1 - left eye (inner)
#2 - left eye
#3 - left eye (outer)
#4 - right eye (inner)
#5 - right eye
#6 - right eye (outer)
#7 - left ear
#8 - right ear
#9 - mouth (left)
#10 - mouth (right)
#11 - left shoulder
#12 - right shoulder
#13 - left elbow
#14 - right elbow
#15 - left wrist
#16 - right wrist
#17 - left pinky
#18 - right pinky
#19 - left index
#20 - right index
#21 - left thumb
#22 - right thumb
#23 - left hip
#24 - right hip
#25 - left knee
#26 - right knee
#27 - left ankle
#28 - right ankle
#29 - left heel
#30 - right heel
#31 - left foot index
#32 - right foot index
- left_shoulder
- left_elbow
- left_wrist
- name: leg_length
landmarks:
- left_hip
- left_knee
- left_ankle

View File

@ -1,75 +1,126 @@
import warnings
import logging
import os
import warnings
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from tabulate import tabulate
import math
import argparse
import cv2
from mediapipe.python.solutions import pose
import logging
warnings.filterwarnings("ignore",
category=UserWarning,
module="google.protobuf")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from mediapipe.python.solutions import (
pose,
)
import yaml
logging.basicConfig(level=logging.INFO)
warnings.filterwarnings(
"ignore",
category=UserWarning,
module="google.protobuf",
)
LANDMARK_NAME_TO_INDEX = {
"nose": 0,
"left_eye_inner": 1,
"left_eye": 2,
"left_eye_outer": 3,
"right_eye_inner": 4,
"right_eye": 5,
"right_eye_outer": 6,
"left_ear": 7,
"right_ear": 8,
"mouth_left": 9,
"mouth_right": 10,
"left_shoulder": 11,
"right_shoulder": 12,
"left_elbow": 13,
"right_elbow": 14,
"left_wrist": 15,
"right_wrist": 16,
"left_pinky": 17,
"right_pinky": 18,
"left_index": 19,
"right_index": 20,
"left_thumb": 21,
"right_thumb": 22,
"left_hip": 23,
"right_hip": 24,
"left_knee": 25,
"right_knee": 26,
"left_ankle": 27,
"right_ankle": 28,
"left_heel": 29,
"right_heel": 30,
"left_foot_index": 31,
"right_foot_index": 32,
}
class Landmarker:
resized_height = 256
resized_width = 300
resized_width = 256
def __init__(self) -> None:
args = self.parse_args()
if args.front_image == None:
self.args = self.parse_args()
self.measurements = self.load_landmarks()
if self.args.front_image is None:
raise Exception("front image needs to be passed")
if args.side_image == None:
if self.args.side_image is None:
raise Exception("side image needs to be passed")
self.front_image = cv2.imread(args.front_image)
self.side_image = cv2.imread(args.side_image)
self.front_image = cv2.imread(self.args.front_image)
self.side_image = cv2.imread(self.args.side_image)
self.front_image_resized = cv2.resize(
self.front_image, (self.resized_height, self.resized_width))
self.side_image_resized = cv2.resize(
self.side_image, (self.resized_height, self.resized_width))
self.front_image_resized = cv2.resize(self.front_image, (self.resized_height, self.resized_width))
self.side_image_resized = cv2.resize(self.side_image, (self.resized_height, self.resized_width))
self.distances = {}
self.person_height = args.person_height
self.pixel_height = args.pixel_height
self.person_height = self.args.person_height
self.pixel_height = self.args.pixel_height
self.pose = pose.Pose(
static_image_mode=True,
min_detection_confidence=args.pose_detection_confidence,
min_tracking_confidence=args.pose_tracking_confidence,
min_detection_confidence=self.args.pose_detection_confidence,
min_tracking_confidence=self.args.pose_tracking_confidence,
)
self.landmarks_to_calculate = []
self.landmarks_indices = [
pose.PoseLandmark.LEFT_SHOULDER.value,
pose.PoseLandmark.RIGHT_SHOULDER.value,
pose.PoseLandmark.LEFT_ELBOW.value,
pose.PoseLandmark.RIGHT_ELBOW.value,
pose.PoseLandmark.LEFT_WRIST.value,
pose.PoseLandmark.RIGHT_WRIST.value,
pose.PoseLandmark.LEFT_HIP.value,
pose.PoseLandmark.RIGHT_HIP.value,
pose.PoseLandmark.LEFT_KNEE.value,
pose.PoseLandmark.RIGHT_KNEE.value,
pose.PoseLandmark.LEFT_ANKLE.value,
pose.PoseLandmark.RIGHT_ANKLE.value,
LANDMARK_NAME_TO_INDEX["left_shoulder"],
LANDMARK_NAME_TO_INDEX["right_shoulder"],
LANDMARK_NAME_TO_INDEX["left_elbow"],
LANDMARK_NAME_TO_INDEX["right_elbow"],
LANDMARK_NAME_TO_INDEX["left_wrist"],
LANDMARK_NAME_TO_INDEX["right_wrist"],
LANDMARK_NAME_TO_INDEX["left_hip"],
LANDMARK_NAME_TO_INDEX["right_hip"],
LANDMARK_NAME_TO_INDEX["left_knee"],
LANDMARK_NAME_TO_INDEX["right_knee"],
LANDMARK_NAME_TO_INDEX["left_ankle"],
LANDMARK_NAME_TO_INDEX["right_ankle"],
]
def load_landmarks(self):
with open(self.args.yaml_file, "r") as file:
landmarks_data = yaml.safe_load(file)
measurements = {}
for measurement in landmarks_data["measurements"]:
measurements[measurement["name"]] = [LANDMARK_NAME_TO_INDEX[l] for l in measurement["landmarks"]]
return measurements
def parse_args(self):
parser = argparse.ArgumentParser()
parser.add_argument("--front",
dest="front_image",
type=str,
help="Front image")
parser.add_argument("--side",
dest="side_image",
type=str,
help="Side image")
parser.add_argument(
"--front",
dest="front_image",
type=str,
help="Front image",
)
parser.add_argument(
"--side",
dest="side_image",
type=str,
help="Side image",
)
parser.add_argument(
"--pose_detection_confidence",
dest="pose_detection_confidence",
@ -86,43 +137,74 @@ class Landmarker:
)
parser.add_argument(
"--person_height",
# default=153,
dest="person_height",
type=int,
help="person height of person",
)
parser.add_argument(
"--pixel_height",
# default=216,
dest="pixel_height",
type=int,
help="pixel height of person",
)
parser.add_argument(
"--measurement",
dest="measurement",
nargs="+",
type=str,
help="Type of measurement",
)
parser.add_argument(
"--yaml_file",
dest="yaml_file",
type=str,
help="Path to the YAML file containing landmarks",
)
return parser.parse_args()
def run(self):
logging.warning("person's height: %s", self.person_height)
logging.warning("person's pixel height: %s", self.pixel_height)
front_results, side_results = self.process_images()
front_results, _ = self.process_images()
self.get_center_top_point(front_results)
self.calculate_distance_betn_landmarks(front_results)
table = []
if self.args.measurement:
for m in self.args.measurement:
if m not in self.measurements:
raise Exception("Incorrect input (input not present in config.yml)")
else:
distance = self.calculate_distance_betn_landmarks(front_results, m)
table.append([m, distance])
else:
for m in self.measurements:
distance = self.calculate_distance_betn_landmarks(front_results, m)
table.append([m, distance])
self.output()
self.display_images()
output = tabulate(
table,
headers=[
"measurement",
"Distance (cm)",
],
tablefmt="plain",
)
print(output)
self.pose.close()
def process_images(self):
front_results = self.pose.process(
cv2.cvtColor(self.front_image_resized, cv2.COLOR_BGR2RGB))
cv2.cvtColor(
self.front_image_resized,
cv2.COLOR_BGR2RGB,
)
)
side_results = self.pose.process(
cv2.cvtColor(self.side_image_resized, cv2.COLOR_BGR2RGB))
cv2.cvtColor(
self.side_image_resized,
cv2.COLOR_BGR2RGB,
)
)
self.side_image_keypoints = self.side_image_resized.copy()
self.front_image_keypoints = self.front_image_resized.copy()
@ -139,12 +221,18 @@ class Landmarker:
side_results.pose_landmarks, # type: ignore# type: ignore
self.landmarks_indices,
)
return front_results, side_results
return (
front_results,
side_results,
)
def pixel_to_metric_ratio(self):
self.pixel_height = self.pixel_distance * 2
pixel_to_metric_ratio = self.person_height / self.pixel_height
logging.warning("pixel_to_metric_ratio %s", pixel_to_metric_ratio)
logging.debug(
"pixel_to_metric_ratio %s",
pixel_to_metric_ratio,
)
return pixel_to_metric_ratio
def draw_landmarks(self, image, landmarks, indices):
@ -155,144 +243,90 @@ class Landmarker:
self.circle(image, cx, cy)
def circle(self, image, cx, cy):
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1)
return cv2.circle(
image,
(cx, cy),
2,
(255, 0, 0),
-1,
)
def output(self):
table = []
for landmark, distance in self.distances.items():
table.append([landmark.replace("_", " "), distance])
output = tabulate(table,
headers=["measurement", "value"],
tablefmt="grid")
print(output)
def calculate_distance_betn_landmarks(self, front_results, landmarks=[]):
def calculate_distance_betn_landmarks(
self,
front_results,
measurement_name,
):
if not front_results.pose_landmarks:
return
landmarks = front_results.pose_landmarks.landmark
leg_landmarks = [
pose.PoseLandmark.LEFT_HIP,
pose.PoseLandmark.LEFT_KNEE,
pose.PoseLandmark.LEFT_ANKLE,
]
hand_landmarks = [
pose.PoseLandmark.LEFT_SHOULDER,
pose.PoseLandmark.LEFT_ELBOW,
pose.PoseLandmark.LEFT_WRIST,
]
self.landmarks_to_calculate = leg_landmarks + hand_landmarks
# self.landmarks_to_calculate = [
# pose.PoseLandmark.LEFT_SHOULDER,
# pose.PoseLandmark.LEFT_ELBOW,
# pose.PoseLandmark.LEFT_WRIST,
# ]
landmark_names = self.measurements[measurement_name]
table = []
for idx, l in enumerate(self.landmarks_to_calculate):
if idx < len(self.landmarks_to_calculate) - 1:
_current = landmarks[l.value]
_nextl = self.landmarks_to_calculate[idx + 1]
_next = landmarks[_nextl.value]
pixel_distance = self.euclidean_distance(
_current.x * self.resized_width,
_current.y * self.resized_height,
_next.x * self.resized_width,
_next.y * self.resized_height)
real_distance = pixel_distance * self.pixel_to_metric_ratio()
table.append([l.name, _nextl.name, real_distance])
output = tabulate(
table,
headers=["Landmark 1", "Landmark 2", "Distance (cm)"],
tablefmt="grid")
print(output)
# for l in self.landmarks_to_calculate:
# real_distance = 0
# for idx, l in enumerate(self.landmarks_to_calculate):
# if idx < len(self.landmarks_to_calculate) - 1:
# _current = landmarks[l.value]
# _nextl = self.landmarks_to_calculate[idx + 1]
# _next = landmarks[_nextl.value]
# pixel_distance = self.euclidean_distance(
# _current.x * self.resized_width,
# _current.y * self.resized_height,
# _next.x * self.resized_width,
# _next.y * self.resized_height,
# )
# real_distance += pixel_distance * self.pixel_to_metric_ratio(
# )
# print(real_distance)
# self.distances[l.name] = real_distance
#
total_distance = 0
for idx in range(len(landmark_names) - 1):
_current = landmarks[landmark_names[idx]]
_next = landmarks[landmark_names[idx + 1]]
pixel_distance = self.euclidean_distance(
_current.x * self.resized_width,
_current.y * self.resized_height,
_next.x * self.resized_width,
_next.y * self.resized_height,
)
real_distance = pixel_distance * self.pixel_to_metric_ratio()
total_distance += real_distance
return total_distance
def euclidean_distance(self, x1, y1, x2, y2):
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
return distance
def destroy(self):
cv2.destroyAllWindows()
def display_images(self):
cv2.imshow("front_image_keypoints", self.front_image_keypoints)
cv2.imshow("side_image_keypoints", self.side_image_keypoints)
cv2.imshow("edges", self.edges)
cv2.waitKey(0)
def get_center_top_point(self, side_results):
gray_image = cv2.cvtColor(self.side_image_keypoints,
cv2.COLOR_BGR2GRAY)
gray_image = cv2.cvtColor(
self.side_image_keypoints,
cv2.COLOR_BGR2GRAY,
)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
roi = blurred_image[0:int(self.side_image_resized.shape[0] / 2), :]
roi = blurred_image[
0 : int(self.side_image_resized.shape[0] / 2),
:,
]
self.edges = cv2.Canny(roi, 50, 150)
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
xt, yt = None, None
self.topmost_point = None
contours, _ = cv2.findContours(
self.edges.copy(),
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE,
)
max_contour = max(contours, key=cv2.contourArea)
rect = cv2.minAreaRect(max_contour)
box = cv2.boxPoints(rect)
box = sorted(
list(box),
key=lambda p: p[1],
)
top_point = min(
box[0],
box[1],
key=lambda p: p[0],
)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
self.topmost_point = tuple(
largest_contour[largest_contour[:, :, 1].argmin()][0])
xt, yt = self.topmost_point
self.circle(self.side_image_keypoints, xt, yt)
left_hip = side_results.pose_landmarks.landmark[LANDMARK_NAME_TO_INDEX["left_hip"]]
right_hip = side_results.pose_landmarks.landmark[LANDMARK_NAME_TO_INDEX["right_hip"]]
logging.warning("xt: %s", xt)
logging.warning("yt: %s", yt)
xc, yc = None, None
landmarks = side_results.pose_landmarks.landmark
center_x = (left_hip.x + right_hip.x) / 2
center_y = (left_hip.y + right_hip.y) / 2
if side_results.pose_landmarks:
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
center_point = (
(left_hip.x + right_hip.x) / 2,
(left_hip.y + right_hip.y) / 2,
)
center_point = (
int(center_point[0] * self.side_image_resized.shape[1]),
int(center_point[1] * self.side_image_resized.shape[0]),
)
xc, yc = center_point
logging.warning("xc: %s", xc)
logging.warning("yc: %s", yc)
self.circle(self.side_image_keypoints, xc, yc)
center_x, center_y = (
int(center_x * self.resized_width),
int(center_y * self.resized_height),
)
self.pixel_distance = self.euclidean_distance(xc, yc, xt, yt)
logging.warning("top_center_pixel_distance: %s",
self.pixel_distance)
self.pixel_height = self.pixel_distance * 2
logging.warning("pxl height: %s ", self.pixel_height)
self.distance = (self.euclidean_distance(xc, yc, xt, yt) *
self.pixel_to_metric_ratio())
return self.distance
self.pixel_distance = self.euclidean_distance(
top_point[0],
top_point[1],
center_x,
center_y,
)
l = Landmarker()
try:
l.run()
except:
print("error")
finally:
l.destroy()
if __name__ == "__main__":
landmarker = Landmarker()
landmarker.run()