changed config file

This commit is contained in:
aparnah 2024-07-16 15:39:45 +05:30
parent 414e62d150
commit d9d0cd4517
2 changed files with 234 additions and 242 deletions

View File

@ -1,57 +1,15 @@
measurements: measurements:
- name: arm_length
landmarks:
- 11
- 13
- 15
- name: leg_length
landmarks:
- 23
- 25
- 27
- name: shoulder_length - name: shoulder_length
landmarks: landmarks:
- 11 - left_shoulder
- 12 - right_shoulder
- name: arm_length
- name: neck_to_hip_length
landmarks: landmarks:
- 11 - left_shoulder
- 23 - left_elbow
- left_wrist
#0 - nose - name: leg_length
#1 - left eye (inner) landmarks:
#2 - left eye - left_hip
#3 - left eye (outer) - left_knee
#4 - right eye (inner) - left_ankle
#5 - right eye
#6 - right eye (outer)
#7 - left ear
#8 - right ear
#9 - mouth (left)
#10 - mouth (right)
#11 - left shoulder
#12 - right shoulder
#13 - left elbow
#14 - right elbow
#15 - left wrist
#16 - right wrist
#17 - left pinky
#18 - right pinky
#19 - left index
#20 - right index
#21 - left thumb
#22 - right thumb
#23 - left hip
#24 - right hip
#25 - left knee
#26 - right knee
#27 - left ankle
#28 - right ankle
#29 - left heel
#30 - right heel
#31 - left foot index
#32 - right foot index

View File

@ -1,75 +1,126 @@
import warnings import logging
import os import os
import warnings
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from tabulate import tabulate from tabulate import tabulate
import math import math
import argparse import argparse
import cv2 import cv2
from mediapipe.python.solutions import pose from mediapipe.python.solutions import (
import logging pose,
)
warnings.filterwarnings("ignore", import yaml
logging.basicConfig(level=logging.INFO)
warnings.filterwarnings(
"ignore",
category=UserWarning, category=UserWarning,
module="google.protobuf") module="google.protobuf",
)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
LANDMARK_NAME_TO_INDEX = {
"nose": 0,
"left_eye_inner": 1,
"left_eye": 2,
"left_eye_outer": 3,
"right_eye_inner": 4,
"right_eye": 5,
"right_eye_outer": 6,
"left_ear": 7,
"right_ear": 8,
"mouth_left": 9,
"mouth_right": 10,
"left_shoulder": 11,
"right_shoulder": 12,
"left_elbow": 13,
"right_elbow": 14,
"left_wrist": 15,
"right_wrist": 16,
"left_pinky": 17,
"right_pinky": 18,
"left_index": 19,
"right_index": 20,
"left_thumb": 21,
"right_thumb": 22,
"left_hip": 23,
"right_hip": 24,
"left_knee": 25,
"right_knee": 26,
"left_ankle": 27,
"right_ankle": 28,
"left_heel": 29,
"right_heel": 30,
"left_foot_index": 31,
"right_foot_index": 32,
}
class Landmarker: class Landmarker:
resized_height = 256 resized_height = 256
resized_width = 300 resized_width = 256
def __init__(self) -> None: def __init__(self) -> None:
args = self.parse_args() self.args = self.parse_args()
if args.front_image == None: self.measurements = self.load_landmarks()
if self.args.front_image is None:
raise Exception("front image needs to be passed") raise Exception("front image needs to be passed")
if args.side_image == None: if self.args.side_image is None:
raise Exception("side image needs to be passed") raise Exception("side image needs to be passed")
self.front_image = cv2.imread(args.front_image) self.front_image = cv2.imread(self.args.front_image)
self.side_image = cv2.imread(args.side_image) self.side_image = cv2.imread(self.args.side_image)
self.front_image_resized = cv2.resize( self.front_image_resized = cv2.resize(self.front_image, (self.resized_height, self.resized_width))
self.front_image, (self.resized_height, self.resized_width)) self.side_image_resized = cv2.resize(self.side_image, (self.resized_height, self.resized_width))
self.side_image_resized = cv2.resize(
self.side_image, (self.resized_height, self.resized_width))
self.distances = {} self.distances = {}
self.person_height = args.person_height self.person_height = self.args.person_height
self.pixel_height = args.pixel_height self.pixel_height = self.args.pixel_height
self.pose = pose.Pose( self.pose = pose.Pose(
static_image_mode=True, static_image_mode=True,
min_detection_confidence=args.pose_detection_confidence, min_detection_confidence=self.args.pose_detection_confidence,
min_tracking_confidence=args.pose_tracking_confidence, min_tracking_confidence=self.args.pose_tracking_confidence,
) )
self.landmarks_to_calculate = []
self.landmarks_indices = [ self.landmarks_indices = [
pose.PoseLandmark.LEFT_SHOULDER.value, LANDMARK_NAME_TO_INDEX["left_shoulder"],
pose.PoseLandmark.RIGHT_SHOULDER.value, LANDMARK_NAME_TO_INDEX["right_shoulder"],
pose.PoseLandmark.LEFT_ELBOW.value, LANDMARK_NAME_TO_INDEX["left_elbow"],
pose.PoseLandmark.RIGHT_ELBOW.value, LANDMARK_NAME_TO_INDEX["right_elbow"],
pose.PoseLandmark.LEFT_WRIST.value, LANDMARK_NAME_TO_INDEX["left_wrist"],
pose.PoseLandmark.RIGHT_WRIST.value, LANDMARK_NAME_TO_INDEX["right_wrist"],
pose.PoseLandmark.LEFT_HIP.value, LANDMARK_NAME_TO_INDEX["left_hip"],
pose.PoseLandmark.RIGHT_HIP.value, LANDMARK_NAME_TO_INDEX["right_hip"],
pose.PoseLandmark.LEFT_KNEE.value, LANDMARK_NAME_TO_INDEX["left_knee"],
pose.PoseLandmark.RIGHT_KNEE.value, LANDMARK_NAME_TO_INDEX["right_knee"],
pose.PoseLandmark.LEFT_ANKLE.value, LANDMARK_NAME_TO_INDEX["left_ankle"],
pose.PoseLandmark.RIGHT_ANKLE.value, LANDMARK_NAME_TO_INDEX["right_ankle"],
] ]
def load_landmarks(self):
with open(self.args.yaml_file, "r") as file:
landmarks_data = yaml.safe_load(file)
measurements = {}
for measurement in landmarks_data["measurements"]:
measurements[measurement["name"]] = [LANDMARK_NAME_TO_INDEX[l] for l in measurement["landmarks"]]
return measurements
def parse_args(self): def parse_args(self):
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--front", parser.add_argument(
"--front",
dest="front_image", dest="front_image",
type=str, type=str,
help="Front image") help="Front image",
parser.add_argument("--side", )
parser.add_argument(
"--side",
dest="side_image", dest="side_image",
type=str, type=str,
help="Side image") help="Side image",
)
parser.add_argument( parser.add_argument(
"--pose_detection_confidence", "--pose_detection_confidence",
dest="pose_detection_confidence", dest="pose_detection_confidence",
@ -86,43 +137,74 @@ class Landmarker:
) )
parser.add_argument( parser.add_argument(
"--person_height", "--person_height",
# default=153,
dest="person_height", dest="person_height",
type=int, type=int,
help="person height of person", help="person height of person",
) )
parser.add_argument( parser.add_argument(
"--pixel_height", "--pixel_height",
# default=216,
dest="pixel_height", dest="pixel_height",
type=int, type=int,
help="pixel height of person", help="pixel height of person",
) )
parser.add_argument(
"--measurement",
dest="measurement",
nargs="+",
type=str,
help="Type of measurement",
)
parser.add_argument(
"--yaml_file",
dest="yaml_file",
type=str,
help="Path to the YAML file containing landmarks",
)
return parser.parse_args() return parser.parse_args()
def run(self): def run(self):
front_results, _ = self.process_images()
logging.warning("person's height: %s", self.person_height)
logging.warning("person's pixel height: %s", self.pixel_height)
front_results, side_results = self.process_images()
self.get_center_top_point(front_results) self.get_center_top_point(front_results)
self.calculate_distance_betn_landmarks(front_results) table = []
if self.args.measurement:
for m in self.args.measurement:
if m not in self.measurements:
raise Exception("Incorrect input (input not present in config.yml)")
else:
distance = self.calculate_distance_betn_landmarks(front_results, m)
table.append([m, distance])
else:
for m in self.measurements:
distance = self.calculate_distance_betn_landmarks(front_results, m)
table.append([m, distance])
self.output() output = tabulate(
table,
self.display_images() headers=[
"measurement",
"Distance (cm)",
],
tablefmt="plain",
)
print(output)
self.pose.close() self.pose.close()
def process_images(self): def process_images(self):
front_results = self.pose.process( front_results = self.pose.process(
cv2.cvtColor(self.front_image_resized, cv2.COLOR_BGR2RGB)) cv2.cvtColor(
self.front_image_resized,
cv2.COLOR_BGR2RGB,
)
)
side_results = self.pose.process( side_results = self.pose.process(
cv2.cvtColor(self.side_image_resized, cv2.COLOR_BGR2RGB)) cv2.cvtColor(
self.side_image_resized,
cv2.COLOR_BGR2RGB,
)
)
self.side_image_keypoints = self.side_image_resized.copy() self.side_image_keypoints = self.side_image_resized.copy()
self.front_image_keypoints = self.front_image_resized.copy() self.front_image_keypoints = self.front_image_resized.copy()
@ -139,12 +221,18 @@ class Landmarker:
side_results.pose_landmarks, # type: ignore# type: ignore side_results.pose_landmarks, # type: ignore# type: ignore
self.landmarks_indices, self.landmarks_indices,
) )
return front_results, side_results return (
front_results,
side_results,
)
def pixel_to_metric_ratio(self): def pixel_to_metric_ratio(self):
self.pixel_height = self.pixel_distance * 2 self.pixel_height = self.pixel_distance * 2
pixel_to_metric_ratio = self.person_height / self.pixel_height pixel_to_metric_ratio = self.person_height / self.pixel_height
logging.warning("pixel_to_metric_ratio %s", pixel_to_metric_ratio) logging.debug(
"pixel_to_metric_ratio %s",
pixel_to_metric_ratio,
)
return pixel_to_metric_ratio return pixel_to_metric_ratio
def draw_landmarks(self, image, landmarks, indices): def draw_landmarks(self, image, landmarks, indices):
@ -155,144 +243,90 @@ class Landmarker:
self.circle(image, cx, cy) self.circle(image, cx, cy)
def circle(self, image, cx, cy): def circle(self, image, cx, cy):
return cv2.circle(image, (cx, cy), 2, (255, 0, 0), -1) return cv2.circle(
image,
(cx, cy),
2,
(255, 0, 0),
-1,
)
def output(self): def calculate_distance_betn_landmarks(
table = [] self,
for landmark, distance in self.distances.items(): front_results,
table.append([landmark.replace("_", " "), distance]) measurement_name,
output = tabulate(table, ):
headers=["measurement", "value"],
tablefmt="grid")
print(output)
def calculate_distance_betn_landmarks(self, front_results, landmarks=[]):
if not front_results.pose_landmarks: if not front_results.pose_landmarks:
return return
landmarks = front_results.pose_landmarks.landmark landmarks = front_results.pose_landmarks.landmark
leg_landmarks = [ landmark_names = self.measurements[measurement_name]
pose.PoseLandmark.LEFT_HIP,
pose.PoseLandmark.LEFT_KNEE,
pose.PoseLandmark.LEFT_ANKLE,
]
hand_landmarks = [
pose.PoseLandmark.LEFT_SHOULDER,
pose.PoseLandmark.LEFT_ELBOW,
pose.PoseLandmark.LEFT_WRIST,
]
self.landmarks_to_calculate = leg_landmarks + hand_landmarks
# self.landmarks_to_calculate = [
# pose.PoseLandmark.LEFT_SHOULDER,
# pose.PoseLandmark.LEFT_ELBOW,
# pose.PoseLandmark.LEFT_WRIST,
# ]
table = [] total_distance = 0
for idx, l in enumerate(self.landmarks_to_calculate): for idx in range(len(landmark_names) - 1):
if idx < len(self.landmarks_to_calculate) - 1: _current = landmarks[landmark_names[idx]]
_current = landmarks[l.value] _next = landmarks[landmark_names[idx + 1]]
_nextl = self.landmarks_to_calculate[idx + 1]
_next = landmarks[_nextl.value]
pixel_distance = self.euclidean_distance( pixel_distance = self.euclidean_distance(
_current.x * self.resized_width, _current.x * self.resized_width,
_current.y * self.resized_height, _current.y * self.resized_height,
_next.x * self.resized_width, _next.x * self.resized_width,
_next.y * self.resized_height) _next.y * self.resized_height,
)
real_distance = pixel_distance * self.pixel_to_metric_ratio() real_distance = pixel_distance * self.pixel_to_metric_ratio()
table.append([l.name, _nextl.name, real_distance]) total_distance += real_distance
return total_distance
output = tabulate(
table,
headers=["Landmark 1", "Landmark 2", "Distance (cm)"],
tablefmt="grid")
print(output)
# for l in self.landmarks_to_calculate:
# real_distance = 0
# for idx, l in enumerate(self.landmarks_to_calculate):
# if idx < len(self.landmarks_to_calculate) - 1:
# _current = landmarks[l.value]
# _nextl = self.landmarks_to_calculate[idx + 1]
# _next = landmarks[_nextl.value]
# pixel_distance = self.euclidean_distance(
# _current.x * self.resized_width,
# _current.y * self.resized_height,
# _next.x * self.resized_width,
# _next.y * self.resized_height,
# )
# real_distance += pixel_distance * self.pixel_to_metric_ratio(
# )
# print(real_distance)
# self.distances[l.name] = real_distance
#
def euclidean_distance(self, x1, y1, x2, y2): def euclidean_distance(self, x1, y1, x2, y2):
distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
return distance return distance
def destroy(self):
cv2.destroyAllWindows()
def display_images(self):
cv2.imshow("front_image_keypoints", self.front_image_keypoints)
cv2.imshow("side_image_keypoints", self.side_image_keypoints)
cv2.imshow("edges", self.edges)
cv2.waitKey(0)
def get_center_top_point(self, side_results): def get_center_top_point(self, side_results):
gray_image = cv2.cvtColor(self.side_image_keypoints, gray_image = cv2.cvtColor(
cv2.COLOR_BGR2GRAY) self.side_image_keypoints,
cv2.COLOR_BGR2GRAY,
)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
roi = blurred_image[0:int(self.side_image_resized.shape[0] / 2), :] roi = blurred_image[
0 : int(self.side_image_resized.shape[0] / 2),
:,
]
self.edges = cv2.Canny(roi, 50, 150) self.edges = cv2.Canny(roi, 50, 150)
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL, contours, _ = cv2.findContours(
cv2.CHAIN_APPROX_SIMPLE) self.edges.copy(),
xt, yt = None, None cv2.RETR_TREE,
self.topmost_point = None cv2.CHAIN_APPROX_SIMPLE,
if contours:
largest_contour = max(contours, key=cv2.contourArea)
self.topmost_point = tuple(
largest_contour[largest_contour[:, :, 1].argmin()][0])
xt, yt = self.topmost_point
self.circle(self.side_image_keypoints, xt, yt)
logging.warning("xt: %s", xt)
logging.warning("yt: %s", yt)
xc, yc = None, None
landmarks = side_results.pose_landmarks.landmark
if side_results.pose_landmarks:
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
center_point = (
(left_hip.x + right_hip.x) / 2,
(left_hip.y + right_hip.y) / 2,
) )
center_point = ( max_contour = max(contours, key=cv2.contourArea)
int(center_point[0] * self.side_image_resized.shape[1]), rect = cv2.minAreaRect(max_contour)
int(center_point[1] * self.side_image_resized.shape[0]), box = cv2.boxPoints(rect)
box = sorted(
list(box),
key=lambda p: p[1],
)
top_point = min(
box[0],
box[1],
key=lambda p: p[0],
) )
xc, yc = center_point
logging.warning("xc: %s", xc)
logging.warning("yc: %s", yc)
self.circle(self.side_image_keypoints, xc, yc)
self.pixel_distance = self.euclidean_distance(xc, yc, xt, yt) left_hip = side_results.pose_landmarks.landmark[LANDMARK_NAME_TO_INDEX["left_hip"]]
logging.warning("top_center_pixel_distance: %s", right_hip = side_results.pose_landmarks.landmark[LANDMARK_NAME_TO_INDEX["right_hip"]]
self.pixel_distance)
self.pixel_height = self.pixel_distance * 2
logging.warning("pxl height: %s ", self.pixel_height)
self.distance = (self.euclidean_distance(xc, yc, xt, yt) *
self.pixel_to_metric_ratio())
return self.distance
l = Landmarker() center_x = (left_hip.x + right_hip.x) / 2
try: center_y = (left_hip.y + right_hip.y) / 2
l.run()
except: center_x, center_y = (
print("error") int(center_x * self.resized_width),
finally: int(center_y * self.resized_height),
l.destroy() )
self.pixel_distance = self.euclidean_distance(
top_point[0],
top_point[1],
center_x,
center_y,
)
if __name__ == "__main__":
landmarker = Landmarker()
landmarker.run()