update code

This commit is contained in:
Aparna Hatte 2024-06-17 12:40:39 +05:30
parent 4518cc7e12
commit 7ffdaaca26
6 changed files with 21 additions and 15 deletions

BIN
assets/aparna_front.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 MiB

BIN
assets/aparna_side.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 MiB

BIN
assets/sonali_front.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

BIN
assets/sonali_side.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

View File

@ -254,7 +254,7 @@ class Landmarker:
int(center_point[1] * self.front_image_resized.shape[0]),
)
xc, yc = center_point
logging.warning(f"xc: {xc}")
logging.warning("xc: ", xc)
logging.warning(f"yc: {yc}")
self.circle(self.front_image_keypoints, xc, yc)

View File

@ -91,7 +91,7 @@ class Landmarker:
)
parser.add_argument(
"--pixel_height",
default=255,
# default=216,
dest="pixel_height",
type=int,
help="pixel height of person",
@ -151,6 +151,7 @@ class Landmarker:
return real_distance
def pixel_to_metric_ratio(self):
self.pixel_height = self.pixel_distance * 2
pixel_to_metric_ratio = self.person_height / self.pixel_height
logging.warning("pixel_to_metric_ratio", pixel_to_metric_ratio)
return pixel_to_metric_ratio
@ -184,6 +185,8 @@ class Landmarker:
print("Distance between center and top point:", self.distance)
print("Height of person:", self.distance * 2)
def calculate_distance_betn_landmarks(self, front_results):
if not front_results.pose_landmarks:
return
@ -222,11 +225,11 @@ class Landmarker:
cv2.imshow("edges", self.edges)
cv2.waitKey(0)
def get_center_top_point(self, front_results):
gray_image = cv2.cvtColor(self.front_image_keypoints,
def get_center_top_point(self, side_results):
gray_image = cv2.cvtColor(self.side_image_keypoints,
cv2.COLOR_BGR2GRAY)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
roi = blurred_image[0:int(self.front_image_resized.shape[0] / 2), :]
roi = blurred_image[0:int(self.side_image_resized.shape[0] / 2), :]
self.edges = cv2.Canny(roi, 50, 150)
contours, _ = cv2.findContours(self.edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
@ -238,11 +241,14 @@ class Landmarker:
self.topmost_point = tuple(
largest_contour[largest_contour[:, :, 1].argmin()][0])
xt, yt = self.topmost_point
self.circle(self.front_image_keypoints, xt, yt)
self.circle(self.side_image_keypoints, xt, yt)
logging.warning("xt: ", xt)
logging.warning(f"yt: ")
xc, yc = None, None
landmarks = front_results.pose_landmarks.landmark
if front_results.pose_landmarks:
landmarks = side_results.pose_landmarks.landmark
if side_results.pose_landmarks: # type: ignore
left_hip = landmarks[pose.PoseLandmark.LEFT_HIP.value]
right_hip = landmarks[pose.PoseLandmark.RIGHT_HIP.value]
center_point = (
@ -250,17 +256,17 @@ class Landmarker:
(left_hip.y + right_hip.y) / 2,
)
center_point = (
int(center_point[0] * self.front_image_resized.shape[1]),
int(center_point[1] * self.front_image_resized.shape[0]),
int(center_point[0] * self.side_image_resized.shape[1]),
int(center_point[1] * self.side_image_resized.shape[0]),
)
xc, yc = center_point
logging.warning(f"xc: {xc}")
logging.warning("xc: ", xc)
logging.warning(f"yc: {yc}")
self.circle(self.front_image_keypoints, xc, yc)
self.circle(self.side_image_keypoints, xc, yc)
self.pixel_distance = self.euclidean_distance(xc, xt, yc, yt)
self.distance = self.euclidean_distance(
xc, xt, yc, yt) * self.pixel_to_metric_ratio()
return self.distance